ASYMPTOTICS FOR AMITSUR'S CAPELLI-TYPE POLYNOMIALS AND VERBALLY PRIME PI-ALGEBRAS

ΒY

FRANCESCA BENANTI

Dipartimento di Matematica ed Applicazioni, Università di Palermo via Archirafi, 34, 90123 Palermo, Italy e-mail: fbenanti@math.unipa.it

AND

Irina Sviridova*

Department of Algebra and Geometric Computations Faculty of Mathematics and Mechanics Ulyanovsk State University, Ulyanovsk 432970, Russia e-mail: sviridovaiyu@sv.ulsu.ru

ABSTRACT

We consider associative *PI*-algebras over a field of characteristic zero. The main goal of the paper is to prove that the codimensions of a verbally prime algebra [11] are asymptotically equal to the codimensions of the *T*-ideal generated by some Amitsur's Capelli-type polynomials $E_{M,L}^*$ [1]. We recall that two sequences a_n , b_n are asymptotically equal, and we write $a_n \simeq b_n$, if and only if $\lim_{n\to\infty} (a_n/b_n) = 1$. In this paper we prove that

 $c_n(M_k(G)) \simeq c_n(E_{k^2,k^2}^*)$ and $c_n(M_{k,l}(G)) \simeq c_n(E_{k^2+l^2,2kl}^*),$

where G is the Grassmann algebra. These results extend to all verbally prime PI-algebras a theorem of A. Giambruno and M. Zaicev [9] giving the asymptotic equality

$$c_n(M_k(F)) \simeq c_n(E^*_{k^2,0})$$

between the codimensions of the matrix algebra $M_k(F)$ and the Capelli polynomials.

^{*} The second author is partially supported by grants RFFI 04-01-00739a, E02-2.0-26. Received March 24, 2005

1. Introduction

Let F be a field of characteristic zero and let $F\langle X \rangle$ be the free associative algebra over F of countable rank on the set $X = \{x_1, x_2, \ldots\}$. Recall that an ideal I of $F\langle X \rangle$ is a T-ideal if it is invariant under all endomorphisms of $F\langle X \rangle$.

Let A be an associative algebra over F; an element $f = f(x_1, \ldots, x_n) \in F\langle X \rangle$ is called a polynomial identity for A if $f(a_1, \ldots, a_n) = 0$ for any $a_1, \ldots, a_n \in A$. If f is a polynomial identity for A we usually write $f \equiv 0$ in A. Let $T(A) = \{f \in F\langle X \rangle: f \equiv 0 \text{ in } A\}$ be the ideal of polynomial identities of A. When A satisfies a non-trivial identity (i.e. $T(A) \neq (0)$), we say that A is a PI-algebra.

The connection between T-ideals of $F\langle X \rangle$ and PI-algebras is well understood: For any F-algebra A, T(A) is a T-ideal of $F\langle X \rangle$ and every T-ideal I of $F\langle X \rangle$ is the ideal of identities of some F-algebra A, I = T(A).

For I = T(A) a T-ideal of $F\langle X \rangle$, we denote by var(I) or var(A) the variety of all associative algebras having the elements of I as polynomial identities.

An important class of *T*-ideals is given by the so-called verbally prime *T*ideals. They were introduced by Kemer (see [11]) in his solution of the Specht problem as basic blocks for the study of arbitrary *T*-ideals. Recall that a *T*ideal $I \subseteq F\langle X \rangle$ is verbally prime if $f(x_1, \ldots, x_r)g(x_{r+1}, \ldots, x_n) \in I$ implies that either $f \in I$ or $g \in I$. A *PI*-algebra *A* is called verbally prime if its *T*-ideal of identities I = T(A) is verbally prime. Also, the corresponding variety of associative algebras var(*A*) is called verbally prime. By the structure theory of *T*-ideals developed by Kemer (see [11]) and his classification of verbally prime *T*-ideals in characteristic zero, the study of an arbitrary *T*-ideal in characteristic zero can be reduced to the study of the *T*-ideals of identities of the following verbally prime algebras:

$$F, F\langle X \rangle, M_k(F), M_k(G), M_{k,l}(G) \quad (k > 0, l > 0),$$

where $G = G^{(0)} + G^{(1)}$ is the infinite-dimensional Grassmann algebra, $M_k(F)$, $M_k(G)$ are the algebras of $k \times k$ matrices over F and G, respectively, and

$$M_{k,l}(G) = {}_{k} \begin{pmatrix} k & l \\ G^{(0)} & G^{(1)} \\ G^{(1)} & G^{(0)} \end{pmatrix}.$$

Recall that G is the algebra generated by a countable set $\{e_1, e_2, \ldots\}$ subject to the conditions $e_i e_j = -e_j e_i$ for all $i, j = 1, 2, \ldots$, and $G = G^{(0)} + G^{(1)}$ is the natural \mathbb{Z}_2 -grading on G, where $G^{(0)}$ and $G^{(1)}$ are the spaces generated by all monomials in the generators e_i of even and odd length, respectively. It is well known that in characteristic zero every T-ideal is completely determined by its multilinear elements. Hence, if P_n is the space of multilinear polynomials of degree n in x_1, \ldots, x_n , we study the sequence of spaces $P_n \cap T(A)$, $n = 1, 2, \ldots$

A useful approach to this study is through the representation theory of the symmetric group S_n . In fact, there is a natural action of S_n on P_n leaving $P_n \cap T(A)$ invariant: if $\sigma \in S_n$ and $f(x_1, \ldots, x_n) \in P_n$ then one defines $\sigma f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. This in turn makes $P_n(A) = P_n/(P_n \cap T(A))$ an S_n -module.

The S_n -character of $P_n(A)$, denoted by $\chi_n(A)$, is called the *n*-th cocharacter of A or of T(A). By complete reducibility, $\chi_n(A)$ decomposes into irreducibles and let $\chi_n(A) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda$, where χ_λ is the irreducible S_n -character associated to the partition λ of n and m_λ is the corresponding multiplicity. Through the sequence of cocharacters $\{\chi_n(A)\}_{n\geq 1}$ one can attach to A a numerical sequence called the sequence of codimensions $\{c_n(A)\}_{n\geq 1}$ of I or A, where

$$c_n(A) = \chi_n(A)(1) = \dim_F P_n/(P_n \cap T(A)),$$

 $n=1,2,\ldots$

It is clear that A is a PI-algebra if and only if $c_n(A) < n!$ for some $n \ge 1$. Regev in [12] proved that if A is an associative PI-algebra, then $c_n(A)$ is exponentially bounded. Hence there exist constants α , β such that $c_n(A) \le \alpha \beta^n$ for any $n \ge 1$. It was recently proved by Giambruno and Zaicev, in [6] and [7], that for a PI-algebra A

$$\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$$

exists and is an integer; $\exp(A)$ is called the PI-exponent of the algebra A. For the verbally prime algebras we have

$$\exp(M_k(F)) = k^2$$
, $\exp(M_k(G)) = 2k^2$, $\exp(M_{k,l}(G)) = (k+l)^2$.

These results were first proved in [14], [15]. Improved proofs appeared later in [2], [7].

In [14] Regev obtained the precise asymptotic behavior of the codimensions of the verbally prime algebra $M_k(F)$. It turns out that

$$c_n(M_k(F)) \simeq C\left(\frac{1}{n}\right)^{(k^2-1)/2} k^{2n},$$

where C is a certain constant explicitly computed. For the other verbally prime PI-algebras $M_k(G)$, $M_{k,l}(G)$ there are only some partial results (see [2]).

It turns out that it is in general a very hard problem to determine the precise asymptotic behavior of such sequences.

In this paper we find a relation among the asymptotics of the codimensions of the verbally prime T-ideals and the T-ideals generated by Amitsur's Capelli-type polynomials.

Now, if $f \in F\langle X \rangle$ we denote by $\langle f \rangle_T$ the *T*-ideal generated by f. Also for $V \subset F\langle X \rangle$ we write $\langle V \rangle_T$ to indicate the *T*-ideal generated by *V*.

Let L and M be two natural numbers, let $\hat{n} = (L+1)(M+1)$ and let μ be a partition of \hat{n} with associated rectangular Young diagram, $\mu = ((L+1)^{M+1}) \vdash \hat{n}$. In [1] the following polynomials were introduced denoting Amitsur's Capelli-type polynomials:

$$e_{M,L}^*(\overline{x},\overline{y}) = e_{M,L}^*(x_1,\ldots,x_{\hat{n}};y_1,\ldots,y_{\hat{n}-1})$$
$$= \sum_{\sigma \in S_{\hat{n}}} \chi_{\mu}(\sigma) x_{\sigma(1)} y_1 x_{\sigma(2)} \cdots y_{\hat{n}-1} x_{\sigma(\hat{n})};$$

where $\chi_{\mu}(\sigma)$ is the value of the irreducible character χ_{μ} corresponding to the partition $\mu \vdash \hat{n}$ on the permutation σ . We note that for L = 0 we have $\mu = (1^{\hat{n}})$ and

$$e^*_{M,L}(\overline{x},\overline{y}) = c_{\hat{n}}(\overline{x},\overline{y}) = \sum_{\sigma \in S_{\hat{n}}} (\operatorname{sgn} \sigma) x_{\sigma(1)} y_1 x_{\sigma(2)} \cdots y_{\hat{n}-1} x_{\sigma(\hat{n})}$$

is the Capelli polynomial.

Amitsur's Capelli-type polynomials generalize the Capelli polynomials in the sense that the Capelli polynomials characterize the algebras having the cocharacter contained in a given strip (see [13]) and Amitsur's polynomials characterize the algebras having a cocharacter contained in a given hook (see [1, Theorem B]).

More precisely, given any integer $d, l \ge 0$ we denote by $H(d, l) = \bigcup_{n\ge 1} \{\lambda = (\lambda_1, \lambda_2, \ldots) \vdash n: \lambda_{d+1} \le l\}$ the infinite hook of arm d and leg l. If the partition λ lies in H(d, l) then its corresponding Young diagram D_{λ} is contained in the (d, l) hook.

Note that H(d, 0) is the set of all partitions with diagrams contained in the strip of height d.

Regev proved (see [13, Theorem 2]) that, if A is a PI-algebra, then A satisfies the Capelli identity $c_d \equiv 0$ if and only if $\chi_n(A) = \sum_{\substack{\lambda \vdash n, \\ \lambda \in H(d-1,0)}} m_\lambda \chi_\lambda$. This result

characterizes the cocharacter sequence of those PI-algebras satisfying a Capelli polynomial. Thus the Capelli identities can be used as a test for a PI-algebra to have cocharacter sequence lying in a strip.

Generalizing this approach Amitsur and Regev proved that the Capelli-type polynomials $e_{M,L}^*$ characterize the algebras whose cocharacter sequence lies in the hook H(M,L). More precisely, if A is a PI-algebra, then A satisfies the Capelli-type identity $e_{M,L}^* \equiv 0$ if and only if $\chi_n(A) = \sum_{\substack{\lambda \vdash n, \\ \lambda \in H(M,L)}} m_\lambda \chi_\lambda$ (see [1, Theorem B]).

Let $E_{M,L}^*$ denote the set of $2^{\hat{n}-1}$ polynomials obtained from $e_{M,L}^*$ by evaluating the variables y_i to 1 in all possible ways. Also, we denote by $\Gamma_{M,L} = \langle E_{M,L}^* \rangle_T$ the *T*-ideal generated by $E_{M,L}^*$. We also write $\mathcal{V}_{M,L} = \operatorname{var}(E_{M,L}^*) = \operatorname{var}(\Gamma_{M,L})$, $c_n(E_{M,L}^*) = c_n(\Gamma_{M,L})$ and $\exp(E_{M,L}^*) = \exp(\Gamma_{M,L})$.

The following relations between the exponent of the Capelli-type polynomials and the exponent of the verbally prime algebras are well known (see [3], [7]):

$$\exp(E_{k^2,0}^*) = k^2 = \exp(M_k(F)),$$

$$\exp(E_{k^2,k^2}^*) = 2k^2 = \exp(M_k(G)),$$
$$\exp(E_{k^2+l^2,2kl}^*) = (k+l)^2 = \exp(M_{k,l}(G)).$$

Also in [9] it was proved that the codimensions of $\Gamma_{k^2,0}$ are asymptotically equal to the codimensions of the verbally prime algebra $M_k(F)$,

$$c_n(E_{k^2,0}^*) = c_n(C_{k^2+1}) \simeq c_n(M_k(F)).$$

In this paper we obtain an analogous result for the other verbally prime algebras. Namely, we prove the following asymptotic equalities:

$$c_n(E_{k^2,k^2}^*) \simeq c_n(M_k(G))$$
 and $c_n(E_{k^2+l^2,2kl}^*) \simeq c_n(M_{k,l}(G))$

2. Asymptotics for $E_{k^2+l^2,2kl}^*$ and $M_{k,l}(G)$

In this section we shall prove our main result about the Capelli-type polynomial $E^*_{k^2+l^2,2kl}$ where $k, l \in \mathbb{N}$, and the verbally prime algebra $M_{k,l}(G)$.

Throughout the paper we will denote by F a field of characteristic zero. Recall that an algebra A is a superalgebra (or \mathbb{Z}_2 -graded algebra) with grading $(A^{(0)}, A^{(1)})$ if $A = A^{(0)} + A^{(1)}$ is a direct sum as a space of its subspaces $A^{(0)}, A^{(1)}$ satisfying

$$A^{(0)}A^{(0)} + A^{(1)}A^{(1)} \subseteq A^{(0)}$$
 and $A^{(0)}A^{(1)} + A^{(1)}A^{(0)} \subseteq A^{(1)}$.

If $G = G^{(0)} + G^{(1)}$ is the infinite-dimensional Grassmann algebra over F, then $G(A) = A^{(0)} \otimes G^{(0)} + A^{(1)} \otimes G^{(1)}$ is called the Grassmann envelope of A. We recall that, by a result of Kemer (see [11, Theorem 2.3]), if \mathcal{V} is a proper variety then there exists a finite-dimensional superalgebra A such that $\mathcal{V} = \operatorname{var}(G(A))$. In what follows the symbol " \oplus " will denote a direct sum of algebras and the symbol "+" will denote a direct sum of vector spaces.

The notion of reduced superalgebra was introduced in [9, Definition 1]. Let $A = A_1 \oplus \cdots \oplus A_r + J$ be a finite-dimensional superalgebra with A_1, \ldots, A_r simple superalgebras and J = J(A) the Jacobson radical of A; A is called reduced if $A_1JA_2 \cdots JA_r \neq 0$. Giambruno and Zaicev showed, also, that these superalgebras can be used as building blocks of any proper variety. They proved that (see [9, Theorem 1]) if \mathcal{V} is a proper variety of algebras, then there exists a finite number of reduced superalgebras B_1, \ldots, B_t and a finite-dimensional superalgebra D such that $\mathcal{V} = \operatorname{var}(G(B_1) \oplus \cdots \oplus G(B_t) \oplus G(D))$, where $\exp(\mathcal{V}) = \exp(G(B_1)) = \cdots = \exp(G(B_t))$ and $\exp(G(D)) < \exp(\mathcal{V})$.

Now we analyze the case of a reduced superalgebra of special type. Recall that $M_{k,l}(F)$ denotes the simple superalgebra of $(k+l) \times (k+l)$ matrices over F with grading $\left(\begin{pmatrix} F_{11} & 0 \\ 0 & F_{22} \end{pmatrix}, \begin{pmatrix} 0 & F_{12} \\ F_{21} & 0 \end{pmatrix} \right)$, where F_{11} , F_{12} , F_{21} , F_{22} are $k \times k, k \times l, l \times k$ and $l \times l$ matrices, respectively.

Throughout this section we assume that $A = M_{k,l}(F) + J$, where J = J(A) is the Jacobson radical of the finite-dimensional superalgebra A. Note that $M_{k,l}(F)$ contains the unit and it certainly belongs to the even part in the grading. It is also known that J is homogeneous under the grading of A [11]. We start with the following key lemmas.

LEMMA 1: The Jacobson radical J can be decomposed into the direct sum of four $M_{k,l}(F)$ -bimodules

$$J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$$

where, for $p, q \in \{0, 1\}$, J_{pq} is a left faithful module or a 0-left module according as p = 1 or p = 0, respectively. Similarly, J_{pq} is a right faithful module or a 0-right module according as q = 1 or q = 0, respectively. Moreover, for $p, q, i, l \in \{0, 1\}$, $J_{pq}J_{ql} \subseteq J_{pl}$, $J_{pq}J_{il} = 0$ for $q \neq i$ and there exists a finitedimensional nilpotent superalgebra N such that $J_{11} \cong M_{k,l}(F) \otimes_F N$ (isomorphism of $M_{k,l}(F)$ -bimodules and of superalgebras).

Proof: The proof of the first part of the lemma is the same as that in [9, Lemma 2]. Now let $\{j_1, \ldots, j_s\}$ be a basis of J_{11} . We can suppose that all elements j_q are homogeneous in the grading (either even or odd). Then $J_{11} = \text{Span}\{e_{rs} j e_{mt}: r, s, m, t = 1, \dots, k + l, j \in \{j_1, \dots, j_s\}\}.$ If $d_{st}(j) = j_{st}(j) = j_{st}(j)$ $\sum_{i=1}^{k+l} e_{isj} e_{ti} \in J_{11}$, then we put $N = \text{Span}\{d_{st}(j): s, t = 1, \dots, k+l, j \in I\}$ $\{j_1, \ldots, j_s\}\}$. Notice that $e_{rs}je_{tm}$ has the same grading as $e_{st}je_{rm}$. Hence the grading of $d_{st}(j)$ is equal to the grading of j plus the grading of e_{st} modulo 2 and all $d_{st}(j)$ are homogeneous. Thus $N = N^{(0)} \oplus N^{(1)}$, where $N^{(0)}$ is generated by all elements $d_{st}(j)$ with grading zero and $N^{(1)}$ is generated by the elements with grading one. N commutes with $M_{k,l}(F)$; in fact, $e_{rm}d_{st}(j) =$ $e_{rm}(\sum_{i=1}^{k+l} e_{is}je_{ti}) = e_{rm}e_{ms}je_{tm} = e_{rs}je_{tm}$ and $d_{st}(j)e_{rm} = (\sum_{i=1}^{k+l} e_{is}je_{ti})e_{rm}$ $= e_{rs} j e_{tr} e_{rm} = e_{rs} j e_{tm}$. Moreover, if we define an F-linear map φ : $J_{11} \rightarrow \varphi$ $M_{k,l}(F) \otimes N$ by $\varphi(e_{rs}je_{mt}) = e_{rt} \otimes d_{sm}(j)$, then it is easy to show that φ is an isomorphism of superalgebras.

LEMMA 2: Let $M = k^2 + l^2$ and L = 2kl with $k, l \in \mathbb{N}$. If $E^*_{M,L} \subseteq Id(G(A))$, then $J_{10} = J_{01} = (0)$.

Proof: First we shall determine a polynomial $e_1^*(\overline{x}; \overline{y})$ which is a consequence of $E_{M,L}^*$ and then, by an opportune substitution of elements of G(A) in $e_1^*(\overline{x}; \overline{y})$, we shall obtain the conclusion of the lemma. Let $\lambda = ((L+1)^{M+1}) \vdash n$ be the partition of n = (M+1)(L+1). Let us consider the following Young tableaux T_{λ} associated to the diagram D_{λ} ,

$T_{\lambda} =$	1	1+(M+1)		1 + L(M+1)
	2	2+(M+1)	•••	2+L(M+1)
	M+1	2(M+1)		(L+1)(M+1)

It is well known [10] that to T_{λ} one associates two subgroups of S_n :

$$R_{T_{\lambda}} = S_{L+1}(1, 1 + (M+1), 1 + 2(M+1), \dots, 1 + L(M+1)) \times \dots \times S_{L+1}(M+1, 2(M+1), 3(M+1), \dots, (L+1)(M+1))$$

and

$$C_{T_{\lambda}} = S_{M+1}(1, \dots, M+1) \times \dots \times S_{M+1}(1 + L(M+1), \dots, (L+1)(M+1)),$$

where $S_t(\beta_1, \ldots, \beta_t)$ stands for the symmetric group of degree t on the elements β_1, \ldots, β_t . $R_{T_{\lambda}}$ (respectively $C_{T_{\lambda}}$) is the subgroup of S_n leaving the rows (respectively the columns) of T_{λ} invariant. The polynomial corresponding to T_{λ} will be

$$e_{T_{\lambda}}(\overline{x}) = \sum_{
ho \in R_{T_{\lambda}}}
ho g_{T_{\lambda}}(\overline{x})$$

where

$$g_{T_{\lambda}}(\overline{x}) = \prod_{i=1}^{L+1} \left(\sum_{\sigma_i \in S_{M+1}} (-1)^{\sigma_i} x_{\sigma_i(1+(i-1)(M+1))} \cdots x_{\sigma_i(M+1+(i-1)(M+1))} \right)$$

and $S_{M+1}(1+(i-1)(M+1),\ldots,i(M+1))$ is the symmetric group of degree M+1 on the elements $1+(i-1)(M+1),\ldots,i(M+1)$. Here, $g_{T_{\lambda}}(\overline{x})$ and $e_{T_{\lambda}}(\overline{x})$ are multilinear polynomials in $\overline{x} = \{x_1,\ldots,x_n\}$. Moreover, $g_{T_{\lambda}}(\overline{x})$ is alternating on each set of variables $\hat{x}_i = \{x_{1+(i-1)(M+1)},\ldots,x_{M+1+(i-1)(M+1)}\}$ for $i = 1,\ldots,L+1$ and $e_{T_{\lambda}}(\overline{x})$ is symmetric on each set of variables $\tilde{x}_i = \{x_i,x_{i+(M+1)},\ldots,x_{i+L(M+1)}\}$ for $i = 1,\ldots,M+1$. Then, the polynomial

$$e_1^*(\overline{x};\overline{y}) = e_{T_\lambda}^*(\overline{x};\overline{y}) = \sum_{
ho \in R_{T_\lambda}}
ho g_{T_\lambda}^*(\overline{x};\overline{y})$$

where

$$g_{T_{\lambda}}^{*}(\overline{x};\overline{y}) = \prod_{i=1}^{L+1} \left(\sum_{\sigma_{i} \in S_{M+1}} (-1)^{\sigma_{i}} \left(\prod_{j=1}^{M+1} y_{j+(i-1)(M+1)} x_{\sigma_{i}(j+(i-1)(M+1))} \right) \right)$$

is multilinear in $\overline{x} = \{x_1, \ldots, x_n\}$ and $\overline{y} = \{y_1, \ldots, y_n\}$ and symmetric on each set of variables \widetilde{x}_i for $i = 1, \ldots, M + 1$.

From [1] it follows that $e_1^*(\overline{x}; \overline{y})$ is a consequence of $e_{M,L}^*(\overline{x}; \overline{y})$. Since $E_{M,L}^*(\overline{x}; \overline{y}) \subseteq Id(G(A))$, we have $e_1^*(\overline{x}; \overline{y}) \in Id(G(A))$. Hence $e_1^*(\overline{sx}; \overline{sy}) = 0$ for all substitutions of elements of G(A), $\overline{sx} = \{\overline{sx}_1, \ldots, \overline{sx}_n\}$ and $\overline{sy} = \{\overline{sy}_1, \ldots, \overline{sy}_n\}$ with $\overline{sx}_i, \overline{sy}_j \in G(A)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, n$.

Let now e_1^0, \ldots, e_M^0 be an ordered basis of $M_{k,l}(F)^{(0)}$ consisting of all matrix units,

$$e_h^0 \in \{e_{i,j} | 1 \le i \le k, 1 \le j \le k\} \cup \{e_{i,j} | k+1 \le i \le k+l, k+1 \le j \le k+l\}$$

and let e_1^1, \ldots, e_L^1 be an ordered basis of $M_{k,l}(F)^{(1)}$ consisting of all matrix units from the odd part of $M_{k,l}(F)$,

$$e_h^1 \in \{e_{i,j} | 1 \le i \le k, k+1 \le j \le k+l\} \cup \{e_{i,j} | k+1 \le i \le k+l, 1 \le j \le k\}.$$

Then we consider the following substitution:

$$\overline{sx}_{i+(j-1)(M+1)} := e_i^0 \otimes g_{ji}^0, \quad j = 1, \dots, L+1,$$

for all i = 1, ..., M, where g_{ji}^0 are all distinct elements from $G^{(0)}$,

$$\overline{sx}_{j(M+1)} := e_j^1 \otimes g_{jM+1}^1, \quad j = 1, \dots, L,$$

with g_{jM+1}^1 all distinct elements of $G^{(1)}$, and

$$\overline{sx}_{(L+1)(M+1)} := r_{10} \otimes g,$$

for any $g \in G$ and arbitrary $r_{10} \in J_{10}$. We take also

$$\overline{sy}_i := e_{hk} \otimes g_i$$

for all i = 1, ..., n, where $g_i \in G^{(0)} \cup G^{(1)}$ and e_{hk} are some opportune matrix units to fix the places.

By the properties of the polynomial $e_1^*(\overline{x}; \overline{y})$ and the particular substitutions considered (recall that $G^{(0)} = Z(G)$), we have

$$e_1^*(\overline{sx};\overline{sy}) = ((L+1)!)^M (e_{ij}r_{10}) \otimes \overline{g} = 0,$$

where $\overline{g} \in G$, $\overline{g} \neq 0$. Then $e_{ij}r_{10} = 0$ for all $i, j \in \{1, \ldots, k+l\}$. Hence we can say that $r_{10} = 0$ for all $r_{10} \in J_{10}$ and the conclusion is obtained.

A similar proof shows that $J_{01} = (0)$.

LEMMA 3: Let $M = k^2 + l^2$ and L = 2kl with $k, l \in \mathbb{N}$. Let $J_{11} \cong M_{k,l}(F) \otimes N$, where $N = N^{(0)} + N^{(1)}$, as in Lemma 1. If $E^*_{M,L} \subseteq Id(G(A))$, then $N^{(0)} \subseteq Z(N)$, the center of N, and $N^{(1)}$ is anticommutative (or, which is the same, is nil of degree 2).

Proof: We will construct a polynomial $e_2^*(\overline{x}; \overline{y})$ as in Lemma 2. Let $\mu = ((L+1)^{M+2})$ be a partition of n' = (L+1)(M+2) = n + (L+1) and D_{μ} the corresponding Young diagram. As in Lemma 2 we consider the Young tableaux

$T_{\mu} = $	1	1+(M+2)	•••	1 + L(M+2)
	2	2+(M+2)	•••	2+L(M+2)
	•			:
	M+1	(M+1)+(M+2)	• • •	(M+1)+L(M+2)
	M+2	2(M+2)		(L+1)(M+2)

and we determine the polynomial $e_2^*(\overline{x}; \overline{y}) = e_{T_{\mu}}^*(\overline{x}; \overline{y})$. Then we make a similar substitution as in Lemma 2: let e_1^0, \ldots, e_M^0 be an ordered basis of matrix units of $M_{k,l}(F)^{(0)}$ and e_1^1, \ldots, e_L^1 an ordered basis of matrix units of $M_{k,l}(F)^{(1)}$. We put

$$\overline{sx}_{i+(j-1)(M+2)} := e_i^0 \otimes g_{ji}^0, \quad j = 1, \dots, L+1,$$

for all i = 1, ..., M, where $g_{ii}^0 \in G^{(0)}$ and they all depend on distinct generators,

$$\overline{sx}_{(M+1)+(j-1)(M+2)} := e_j^1 \otimes g_{jM+1}^1, \quad j = 1, \dots, L$$

and

$$\overline{x}_{j(M+2)} := e_j^1 \otimes g_{jM+2}^1, \quad j = 1, \dots, L$$

where $g_{jM+1}^1, g_{jM+2}^1 \in G^{(1)}$ are all distinct,

 $\overline{sx}_{(M+1)+L(M+2)} := d_1 \otimes g_1$ and $\overline{sx}_{(L+1)(M+2)} := d_2 \otimes g_2$,

where $g_1, g_2 \in G^{(0)} \cup G^{(1)}$ and $d_1, d_2 \in N^{(0)} \cup N^{(1)}$. Also we put

$$\overline{sy}_i := e_{hk} \otimes g_i, \quad i = 1, \dots, n,$$

where $g_i \in G^{(0)} \cup G^{(1)}$ and e_{hk} are some opportune matrix units.

Note that $e_2^*(\overline{x}; \overline{y})$ is a multilinear polynomial in the set of variables \overline{x} and \overline{y} ; it has similar properties of symmetrizing and alternating as $e_1^*(\overline{x}; \overline{y})$ in Lemma 2. Now, we consider four different cases:

CASE 1: Let $d_1, d_2 \in N^{(0)}$. In this case by the same reasons as in [9, Lemma 4] for the Capelli polynomial, we obtain

$$e_2^*(\overline{sx},\overline{sy}) = ((L+1)!)^M \cdot 2^L \cdot \binom{k+l+2}{2} \cdot [(e_{ij}[d_1,d_2]) \otimes g] = 0,$$

for some $g \in G$, for any $i, j \in \{1, ..., k + l\}$. Then $[d_1, d_2] = 0$, for all $d_1, d_2 \in N^{(0)}$.

CASE 2: Let $d_1 \in N^{(0)}$ and $d_2 \in N^{(1)}$. Thus $\overline{sx}_{(M+1)+L(M+2)} = d_1 \otimes g_1$, with $g_1 \in G^{(0)}$ and $\overline{sx}_{(L+1)(M+2)} = d_2 \otimes g_2$, with $g_2 \in G^{(1)}$. Since $G^{(0)} = Z(G)$ the proof is similar as in case 1 and also $[d_1, d_2] = 0$.

CASE 3: Let $d_1 \in N^{(1)}$ and $d_2 \in N^{(0)}$. We have the same conclusion as in case 2.

CASE 4: Let $d_1, d_2 \in N^{(1)}$. In this case $g_1, g_2 \in G^{(1)}$. Hence

$$e_2^*(\overline{sx},\overline{sy}) = ((L+1)!)^M \cdot 2^L \cdot {k+l+2 \choose 2} \cdot [(e_{ij}(d_1 \circ d_2)) \otimes g] = 0,$$

where $\alpha \circ \beta = \alpha \beta + \beta \alpha$ is the Jacobi product, $g \in G$ and $i, j \in \{1, \ldots, k+l\}$. Then $d_1d_2 + d_2d_1 = 0$ for all $d_1, d_2 \in N^{(1)}$. In particular, if $d_1 = d_2$, we have $d_1^2 = 0$.

Thus the lemma is proved.

LEMMA 4: If N^{\sharp} denotes the algebra obtained from N by adjoining a unit element, then

$$T(G(M_{k,l}(F) \otimes N^{\sharp})) = T(G(M_{k,l}(F))).$$

Proof: The conclusion $T(G(M_{k,l}(F)\otimes N^{\sharp})) \subseteq T(G(M_{k,l}(F)))$ is trivial because $1 \in N^{\sharp}$. We want to show that $T(G(M_{k,l}(F)) \subseteq T(G(M_{k,l}(F)\otimes N^{\sharp})))$. Now, let $f(x_1, \ldots, x_n)$ be a multilinear polynomial in $T(G(M_{k,l}(F)))$ which is not an identity of $G(M_{k,l}(F)\otimes N^{\sharp})$. Then there exist $\alpha_1, \ldots, \alpha_n \in G(M_{k,l}(F)\otimes N^{\sharp})$ such that $f(\alpha_1, \ldots, \alpha_n) \neq 0$. We may clearly assume that there exist $\beta_1, \ldots, \beta_n \in M_{k,l}(F)^{(0)} \cup M_{k,l}(F)^{(1)}$ and $\gamma_1, \ldots, \gamma_n \in ((N^{\sharp})^{(0)} \otimes G^{(0)} + (N^{\sharp})^{(1)} \otimes G^{(1)}) \cup ((N^{\sharp})^{(1)} \otimes G^{(0)} + (N^{\sharp})^{(0)} \otimes G^{(1)})$ such that

(1)
$$f(\beta_1 \otimes \gamma_1, \ldots, \beta_n \otimes \gamma_n) \neq 0.$$

Let $\gamma_1, \ldots, \gamma_r \in (N^{\sharp})^{(0)} \otimes G^{(0)} + (N^{\sharp})^{(1)} \otimes G^{(1)}, \ \beta_1, \ldots, \beta_r \in M_{k,l}(F)^{(0)}$ and $\gamma_{r+1}, \ldots, \gamma_n \in (N^{\sharp})^{(1)} \otimes G^{(0)} + (N^{\sharp})^{(0)} \otimes G^{(1)}, \ \beta_{r+1}, \ldots, \beta_n \in M_{k,l}(F)^{(1)}$. Then

we may assume that $\gamma_i = n_i^0 \otimes g_i^0 + n_i^1 \otimes g_i^1$, for $i = 1, \ldots, r$ and $\gamma_j = n_j^1 \otimes g_j^0 + n_j^0 \otimes g_j^1$, for $j = r + 1, \ldots, n$. From (1) we have

$$0 \neq f(\beta_1 \otimes \gamma_1, \dots, \beta_n \otimes \gamma_n)$$

= $f(\beta_1 \otimes (n_1^0 \otimes g_1^0 + n_1^1 \otimes g_1^1), \dots, \beta_n \otimes (n_n^1 \otimes g_n^0 + n_n^0 \otimes g_n^1))$
= $\sum_k f(\beta_1 \otimes \delta_{1k}^0, \dots, \beta_r \otimes \delta_{rk}^0, \beta_{r+1} \otimes \delta_{r+1k}^1, \dots, \beta_n \otimes \delta_{nk}^1),$

where $\delta_{ik}^0 \in \{n_i^0 \otimes g_i^0, n_i^1 \otimes g_i^1\}, i = 1, \ldots, r$, and $\delta_i^1 \in \{n_i^1 \otimes g_i^0, n_i^0 \otimes g_i^1\}, i = r + 1, \ldots, n$. Hence there exists k such that

$$\hat{f}_k = f(\beta_1 \otimes \delta_{1k}^0, \dots, \beta_n \otimes \delta_{nk}^1) \neq 0.$$

More precisely, we have

$$0 \neq f(\beta_1 \otimes \delta_{1k}^0, \dots, \beta_n \otimes \delta_{nk}^1)$$

= $f(\beta_1 \otimes (n_1^{i_1} \otimes g_1^{j_1}), \dots, \beta_r \otimes (n_r^{i_r} \otimes g_r^{j_r}), \dots, \beta_n \otimes (n_n^{i_n} \otimes g_n^{j_n})),$

where $i_k, j_k \in \{0, 1\}$, and $j_k = i_k$ for k = 1, ..., r, $j_k \neq i_k$ for k = r + 1, ..., n. Since from Lemmas 2 and 3 the n_i^0 's commute with any elements and the n_i^1 's anticommute among themselves, we can write

(2)
$$0 \neq f(\beta_1 \otimes \delta^0_{1k}, \ldots, \beta_n \otimes \delta^1_{nk}) = b \otimes (n_1 \cdots n_n) \otimes (g_1 \cdots g_n),$$

with $0 \neq b \in M_{k,l}(F)$ and $0 \neq n_1 \cdots n_n \otimes g_1 \cdots g_n \in N^{\sharp} \otimes G$.

Now, if we substitute in (2) the elements δ_{ik}^0 with distinct $g_i^0 \in G^{(0)}$ for $k = 1, \ldots, r$ and δ_{ik}^1 with $g_i^1 \in G^{(1)}$ for $k = r + 1, \ldots, n$, then also

$$f(\beta_1 \otimes g_1^0, \dots, \beta_r \otimes g_r^0, \beta_{r+1} \otimes g_{r+1}^1, \dots, \beta_n \otimes g_n^1) = b \otimes g \neq 0$$

for the same $b \in M_{k,l}(F)$ and $0 \neq g = g_1^0 \cdots g_r^0 \cdot g_{r+1}^1 \cdots g_n^1 \in G$. Hence f is not an identity of $G(M_{k,l}(F))$ and the proof is complete.

THEOREM 5: Let $k, l \in \mathbb{N}$. Then $\operatorname{var}(E_{k^2+l^2,2kl}^*) = \operatorname{var}(M_{k,l}(G) \oplus G(D'))$, where D' is a finite-dimensional superalgebra such that $\exp(D') < (k+l)^2$. In particular,

$$c_n(E^*_{k^2+l^2,2kl}) \simeq c_n(M_{k,l}(G)).$$

Proof: Berele and Regev in [3] proved that

$$\exp(E_{k^2+l^2,2kl}^*) = k^2 + l^2 + 2kl = (k+l)^2.$$

Moreover, by [9, Theorem 1], there exist some finite-dimensional reduced superalgebras A_1, \ldots, A_s such that

(3)
$$\mathcal{V}_{k^2+l^2,2kl} = \operatorname{var}(G(A_1) \oplus \cdots \oplus G(A_s) \oplus G(D)),$$

where $\exp(G(A_1)) = \cdots = \exp(G(A_s)) = \exp(\mathcal{V}_{k^2+l^2,2kl}) = (k+l)^2$ and $\exp(G(D)) < \exp(\mathcal{V}_{k^2+l^2,2kl}).$

Now, we analyze the structure of a finite-dimensional reduced superalgebra A which satisfies $E_{k^2+l^2,2kl}^*$.

Let A be a finite-dimensional reduced superalgebra such that $\exp(G(A)) =$ $\exp(\mathcal{V}_{k^2+l^2,2kl})$ and $E^*_{k^2+l^2,2kl} \subseteq T(G(A))$. We can write $A = B_1 \oplus \cdots \oplus B_q + J$, where B_i are simple subalgebras and J = J(A) is the Jacobson radical of A.

Recall that a simple finite-dimensional superalgebra B_i over F is isomorphic to one of the following algebras (see [11]):

- 1. $M_{d_i}(F)$, with trivial grading $(M_{d_i}(F), 0)$;
- 2. $M_{s_i}(D)$, where $D = F \oplus tF$ and $t^2 = 1$, with grading $(M_{s_i}(F), tM_{s_i}(F))$; 3. $M_{k_i,l_i}(F)$ with grading $\begin{pmatrix} F_{11} & 0 \\ 0 & F_{22} \end{pmatrix}, \begin{pmatrix} 0 & F_{12} \\ F_{21} & 0 \end{pmatrix}$, where $F_{11}, F_{12}, F_{21}, F_{22}$ are $k_i \times k_i, k_i \times l_i, l_i \times k_i$ and $l_i \times l_i$ matrices, respectively, $k_i > 0$ and $l_i > 0$.

Hence

$$G(A) = G(B_1) \oplus \cdots \oplus G(B_q) + (J^{(0)} \otimes G^{(0)} + J^{(1)} \otimes G^{(1)}),$$

where $G(B_i)$ is isomorphic to $M_{d_i}(F)$ or $M_{s_i}(G)$ or $M_{k_i,l_i}(G)$.

Let t_1 be the number of superalgebras B_i of the first type, let t_2 be the number of superalgebras B_i of the second type, and finally let t_3 be the number of B_i of the third type, $t_1 + t_2 + t_3 = q$. Then by [8] and [6] there exists a minimal (see definition in [8]) superalgebra C such that $G(C) \subseteq G(A)$ and

$$T(G(C)) = I_1 \cdots I_p,$$

where $I_i = T(G(D_i))$ and $\exp(G(C)) = \exp(G(A)) = (k+l)^2$. Hence G(A)contains a subalgebra isomorphic to the following upper block triangular matrix algebra:

$$UT_p(r_1,...,r_p) = \begin{pmatrix} G_{11} & * \\ 0 & \ddots & \\ \vdots & & \\ 0 & \cdots & 0 & G_{pp} \end{pmatrix},$$

where $G_{ii} = G(D_i)$ is one of the following: $M_{d_i}(F)$, $M_{s_i}(G)$, $M_{k_i,l_i}(G)$; and $r_i = d_i$ or $r_i = s_i$ or $r_i = k_i + l_i$.

Since $G(C) \subseteq G(A)$, we have that $E^*_{k^2+l^2,2kl} \subseteq T(G(C))$.

Moreover, it is well known (see [14]) that the *n*-th cocharacter of the matrix algebra $M_d(F)$ lies in a strip of height d^2 . Also, it is clear that the *n*-th cocharacter of the verbally prime algebra $M_s(G)$ lies in a hook of arm and leg s^2 and the *n*-th cocharacter of $M_{k,l}(G)$ lies in a hook of arm $k^2 + l^2$ and leg 2kl (by virtue of [1, Theorem B], it is enough to check that $M_s(G)$ satisfies $e_{s^2,s^2}^* = 0$ and $M_{k,l}(G)$ satisfies the identity $e_{k^2+l^2,2kl}^* = 0$, which is evidently true). By applying the Littlewood-Richardson rule, Berele and Regev in [2, Theorem 1.1] give a rule to calculate the *n*-th cocharacter of a product of *T*-ideals. By this rule and by the results about the form of the *n*-th cocharacter of the verbally prime algebras mentioned before, similar to [3, 9] we can estimate the size of a hook and a square containing all diagrams which appear with non-zero multiplicity in the decomposition of the *n*-th cocharacter of T(G(C)). More precisely,

$$\chi_n(T(G(C))) = \sum_{\substack{\lambda \vdash n \\ \lambda \in H'}} m_\lambda \chi_\lambda$$

where $H' = H(k^2 + l^2, 2kl) \cup D(k^2 + l^2 + m, 2kl + m)$ is the hook of arm $k^2 + l^2$ and leg 2kl plus a rectangle of size $m^2 > (p-1)^2$. In this decomposition, because we have p-1 multiplication, there is one diagram $D_{\hat{\mu}}$ with non-zero multiplicity and containing the rectangle of size $(2kl + 1)^{k^2+l^2+p-1}$. Then, by [1, Theorem B], $E_{k^2+l^2+p-2,2kl}^* \not\subseteq T(G(C))$. Taking into account $E_{k^2+l^2,2kl}^* \subseteq T(G(C))$ we conclude $p \leq 1$. It means p = 1 and $C \in \{M_{d_i}(F), M_{s_i}(D), M_{k_i,l_i}(F)\}$. We have G(C) is a subalgebra of the algebra G(A), where A is reduced and $\exp(G(A)) =$ $\exp(G(C))$. Then from [7] $\exp(G(A)) = \sum_{i=1}^{q} \dim B_i = \exp(G(C))$. Also, granting B_i and C are simple superalgebras we obtain q = 1 and can assume $B_1 \cong C$.

Thus A = B + J with $B \cong M_{d_1}(F)$ or $B \cong M_{s_1}(D)$ or $B \cong M_{k_1,l_1}(F)$. Since $\exp(G(A)) = (k+l)^2$ and G(A) corresponds to the hook $H(k^2+l^2, 2kl)$ for $l \neq 0$ (see [7]), we have $k_1 = k$, and $l_1 = l$. Then

$$A \cong M_{k,l}(F) + (J^{(0)} + J^{(1)}),$$

 and

$$G(A) \cong M_{k,l}(G) \dotplus (J^{(0)} \otimes G^{(0)} \dotplus J^{(1)} \otimes G^{(1)})$$

with $G(A) \in \mathcal{V}_{k^2+l^2,2kl}$. From Lemmas 1, 2 and 3 we have

$$A \cong (M_{k,l}(F) + J_{11}) \oplus J_{00} \cong (M_{k,l}(F) \otimes N^{\sharp}) \oplus J_{00}.$$

From Lemma 4, $T(G(M_{k,l}(F) \otimes N^{\sharp})) = T(G(M_{k,l}(F)))$, then $var(G(A)) = var(M_{k,l}(G) \oplus G(J_{00}))$; here J_{00} is nilpotent. Hence, recalling the decomposition given in (3), we get

$$\mathcal{V}_{k^2+l^2,2kl} = \operatorname{var}(M_{k,l}(G) \oplus G(D')),$$

where D' is a finite-dimensional superalgebra with $\exp(G(D')) < (k+l)^2$. Then, from [9, Corollary 2] we have

$$c_n(E^*_{k^2+l^2,2kl}) \simeq c_n(M_{k,l}(G)).$$

3. Asymptotics for E_{s^2,s^2}^* and $M_s(G)$

In this section we shall prove that the codimensions of Γ_{s^2,s^2} are asymptotically equal to the codimensions of the verbally prime algebra $M_s(G)$, $s \in \mathbb{N}$. Throughout this section we assume that $A = M_s(D) + J$, where $M_s(D)$ is the simple reduced superalgebra of $s \times s$ matrices over $D = F \oplus tF$ ($t^2 = 1$) with grading $(M_s(F), tM_s(F))$ and J = J(A) is the Jacobson radical of the finite-dimensional superalgebra A. We start with the following lemma, which establishes a similar result to Lemma 1.

LEMMA 6: The Jacobson radical J can be decomposed into the direct sum of four $M_s(D)$ -bimodules

$$J = J_{00} \oplus J_{01} \oplus J_{10} \oplus J_{11}$$

where, for $p, q \in \{0, 1\}$, J_{pq} is a left faithful module or a 0-left module according as p = 1 or p = 0, respectively. Similarly, J_{pq} is a right faithful module or a 0-right module according as q = 1 or q = 0, respectively. Moreover, for $p, q, i, l \in \{0, 1\}$, $J_{pq}J_{ql} \subseteq J_{pl}$, $J_{pq}J_{il} = 0$ for $q \neq i$ and there exists a finite-dimensional nilpotent superalgebra N such that $J_{11} \cong M_s(D) \otimes_F N$ (isomorphism of $M_s(D)$ bimodules and of superalgebras).

Proof: Similar to the proof of Lemma 1 the first part follows from the [9, Lemma 2]. We only should note that we can choose a homogeneous system Q of elements $j \in J_{11}$ generating the J_{11} as a $M_s(D)$ -bimodule. Let $Q = Q^{(0)} \cup Q^{(1)}$, where $Q^{(0)}$ contains all even elements of Q and $Q^{(1)}$ contains the odd ones. Then we consider as in Lemma 1 the elements $d_{km}(j) = \sum_{i=1}^{s} e_{ik} j e_{mi}$, $k, m = 1, \ldots, s$, $j \in Q$, which has the same grading type as j and commutes with elements of $M_s(D)$. Take $N = N^{(0)} \oplus N^{(1)}$, where

$$N^{(0)} = \text{Span}\{d_{km}(j): j \in Q^{(0)}, k, m = 1, \dots, s\}$$

and

$$N^{(1)} = \text{Span}\{d_{km}(j): j \in Q^{(1)}, k, m = 1, \dots, s\}.$$

We have that $M_s(D) \otimes N$ is a superalgebra with natural \mathbb{Z}_2 -grading: $(M_s(F) \otimes N^{(0)} + M_s(F) \cdot t \otimes N^{(1)}, M_s(F) \otimes N^{(1)} + M_s(F) \cdot t \otimes N^{(0)})$, and the *D*-linear map $\phi: J_{11} \to M_s(D) \otimes N$, $\phi: e_{rk} j e_{mq} \mapsto e_{rq} \otimes d_{km}(j)$ is extended to an isomorphism of the superalgebras. The lemma is proved.

Now, we will use the polynomials $e_1^*(\overline{x}; \overline{y})$ and $e_2^*(\overline{x}; \overline{y})$ from Lemmas 2 and 3 to prove the following two lemmas.

LEMMA 7: Let $M = L = s^2$ with $s \in \mathbb{N}$. If $E^*_{M,L} \subseteq Id(G(A))$, then $J_{10} = J_{01} = (0)$.

Proof: For $M = L = s^2$ we construct, as in Lemma 2, the polynomial $e_1^*(\overline{x}; \overline{y})$ as a consequence of $E_{M,L}^*$. Now, we make the following substitution: let e_1, \ldots, e_s be an ordered basis of $M_s(F)$ consisting of all matrix units, for $1 \le i \le M$ and $1 \le j \le L + 1$. We set

$$\overline{sx}_{i+(j-1)(M+1)} := e_i \otimes g_{ji}^0, \quad j \neq i$$

and

$$\overline{sx}_{i+(i-1)(M+1)} := e_i \otimes g_{ii}^1$$

where $g_{ji}^0 \in G^{(0)}$ and $g_{ii}^1 \in G^{(1)}$. Also, we get

$$\overline{sx}_{j(M+1)} := e_j \otimes g^1_{j(M+1)}, \quad 1 \le j \le L$$

 and

$$\overline{sx}_{(L+1)(M+1)} := r_{10} \otimes g$$

where $g_{i(M+1)}^1 \in G^{(1)}$, $r_{10} \in J_{10}$ and $g \in G^{(0)} \cup G^{(1)}$.

As in Lemma 2 we put instead of the y's the elements of the type $e \otimes g_0$, where e is a matrix unit and $g_0 \in G^{(0)}$. Choosing the matrix units e we fix all places for \overline{sx} 's.

As a result, after this substitution of elements of G(A), we obtain

$$e_1^*(\overline{sx},\overline{sy}) = (L!)^M 2^L e_{ij} r_{10} \otimes g = 0,$$

where $g \in G$. Thus $r_{10} = 0$ for all $r_{10} \in J_{10}$. Analogously, $J_{01} = 0$ and the lemma is proved.

LEMMA 8: Let $M = L = s^2$ with $s \in \mathbb{N}$. Let $J_{11} \simeq M_s(D) \otimes N$, where $N = N^{(0)} \oplus N^{(1)}$, as in Lemma 6. If $E^*_{M,L} \subseteq Id(G(A))$, then $N^{(0)} \subseteq Z(N)$, the center of N, and $N^{(1)}$ is anticommutative (or, which is the same, is nil of degree 2).

Proof: As in Lemma 3 for $M = L = s^2$ we determine the polynomial $e_2^*(\overline{x}, \overline{y})$, which is a consequence of $E_{M,L}^*$. Then we make the following substitution, similar to the substitution in Lemma 7: let e_1, \ldots, e_s be an ordered basis consisting of matrix units of $M_s(F)$, for $1 \leq i \leq M$ and $1 \leq j \leq L + 1$. We put

$$\overline{sx}_{i+(j-1)(M+1)} := e_i \otimes g_{ji}^0, \quad j \neq i$$

 and

$$\overline{sx}_{i+(i-1)(M+1)} := e_i \otimes g_{ii}^1$$

where $g_{ji}^0 \in G^{(0)}$ and $g_{ii}^1 \in G^{(1)}$ and they are all distinct. Moreover, we put

$$\overline{sx}_{(M+1)+(j-1)(M+2)} := e_j \otimes g_{j(M+1)}^0, \quad 1 \le j \le L, \\
\overline{sx}_{j(M+2)} := e_j \otimes g_{j(M+2)}^1, \quad 1 \le j \le L$$

and

$$\overline{sx}_{(M+1)+L(M+2)} := d_1 \otimes g_1,$$
$$\overline{sx}_{(L+1)(M+2)} := d_2 \otimes g_2,$$

where $g_{j(M+1)}^{0} \in G^{(0)}$ and $g_{j(M+2)}^{1} \in G^{(1)}$ are all distinct, $g_{1}, g_{2} \in G^{(0)} \cup G^{(1)}$ and $d_{1}, d_{2} \in N^{(0)} \cup N^{(1)}$. Also, as in the previous lemmas, we substitute the y's with elements of the type $e \otimes g_{0}$, where the e's are distinct matrix units and $g_{0} \in G^{(0)}$ taken to fix all places for \overline{sx} 's. Hence we obtained the following results: if $d_{1}, d_{2} \in N^{(0)}$ or $d_{1} \in N^{(0)}$ and $d_{2} \in N^{(1)}$ or $d_{1} \in N^{(1)}$ and $d_{2} \in N^{(0)}$, then similarly to [9, Lemma 4]

$$e_2^*(\overline{sx},\overline{sy}) = K_1(L!)^M 2^L e_{ii}[d_1,d_2] \otimes g = 0,$$

for some $g \in G$ and some natural K_1 . Thus $[d_1, d_2] = 0$. If $d_1, d_2 \in N^{(1)}$ then

$$e_2^*(\overline{sx},\overline{sy}) = K_2(L!)^M 2^L(e_{ii}(d_1 \circ d_2)) \otimes g = 0, \quad K_2 \in \mathbb{N}$$

Hence $d_1d_2 + d_2d_1 = 0$ for all $d_1, d_2 \in N^{(1)}$ and the lemma is proved.

The proof of the following lemma is the same as the proof of Lemma 4.

LEMMA 9: If N^{\sharp} denotes the algebra obtained from N by adjoining a unit element, then

$$T(G(M_s(D) \otimes N^{\sharp})) = T(G(M_s(D))).$$

THEOREM 10: Let $s \in \mathbb{N}$, s > 0. Then $\operatorname{var}(E^*_{s^2,s^2}) = \operatorname{var}(M_s(G) \oplus G(D'))$, where D' is a finite-dimensional superalgebra such that $\exp(D') < 2s^2$. In particular,

$$c_n(E^*_{s^2,s^2}) \simeq c_n(M_s(G)).$$

Proof: The first part of the theorem is the same as that of Theorem 5. Hence we have a finite-dimensional reduced superalgebra A with $\exp(G(A)) = \exp(\mathcal{V}_{s^2,s^2})$ and $E^*_{s^2,s^2} \subseteq T(G(A))$, and A = B + J with $B \cong M_{d_1}(F)$ or $B \cong M_{s_1}(D)$ or $B \cong M_{k_1,l_1}(F)$. Since, by a result of Berele and Regev [3], $\exp(G(A)) = \exp(\mathcal{V}_{s^2,s^2}) = 2s^2$, we have

$$A \cong M_s(D) + (J^{(0)} + J^{(1)}),$$

and

$$G(A) \cong M_s(G) \dotplus (J^{(0)} \otimes G^{(0)} \dotplus J^{(1)} \otimes G^{(1)})$$

with $G(A) \in \mathcal{V}_{s^2,s^2}$. By Lemmas 6, 7 and 8 we have

$$A \cong (M_s(D) \dot{+} J_{11}) \oplus J_{00} \cong (M_s(D) \otimes N^{\sharp}) \oplus J_{00}.$$

From Lemma 9, $T(G(M_2(D) \otimes N^{\sharp})) = T(G(M_s(D)))$. Then $var(G(A)) = var(M_s(G) \oplus G(J_{00}))$, where J_{00} is nilpotent. Hence, we get

$$\mathcal{V}_{s^2,s^2} = \operatorname{var}(M_s(G) \oplus G(D')),$$

where D' is a finite-dimensional superalgebra with $\exp(G(D')) < 2s^2$. So, by [9, Corollary 2], we have

$$c_n(E^*_{s^2,s^2}) \simeq c_n(M_s(G))$$

and the proof is complete.

ACKNOWLEDGEMENT: The second author is very grateful to Francesca Benanti, Antonio Giambruno and all Italian colleagues in Palermo University for their warm hospitality.

References

- S. A. Amitsur and A. Regev, PI-algebras and their cocharacters, Journal of Algebra 78 (1982), 248-254.
- [2] A. Berele and A. Regev, On the codimensions of verbally prime P.I.-algebras, Israel Journal of Mathematics 91 (1995), 239-247.
- [3] A. Berele and A. Regev, Exponential growth for codimensions of some P.I. algebras, Journal of Algebra 241 (2001), 118–145.
- [4] E. Formanek, Invariants and the ring of generic matrices, Journal of Algebra 89 (1984), 178-223.
- [5] E. Formanek, A conjecture of Regev about the Capelli polynomial, Journal of Algebra 109 (1987), 93-114.
- [6] A. Giambruno and M. Zaicev, On codimension growth of finitely generated associative algebras, Advances in Mathematics 140 (1998), 145–155.
- [7] A. Giambruno and M. Zaicev, Exponential codimension growth of P.I. algebras: an exact estimate, Advances in Mathematics 142 (1999), 221–243.
- [8] A. Giambruno and M. Zaicev, Minimal varieties of algebras of exponential growth, Electronic Research Announcements of the American Mathematical Society 6 (2000), 40-44 (electronic).
- [9] A. Giambruno and M. Zaicev, Asymptotics for the standard and the Capelli identities, Israel Journal of Mathematics 135 (2003), 125–145.
- [10] G. James and A. Kerber, The representation theory of the symmetric group, in Encyclopedia of Mathematics and its Applications, Vol. 16, Addison-Wesley, London, 1981.
- [11] A. R. Kemer, Ideals of Identities of Associative Algebras, American Mathematical Society Translations of Mathematical Monographs 87, Providence, RI, 1991.
- [12] A. Regev, Existence of identities in $A \otimes B$, Israel Journal of Mathematics 11 (1972), 131–152.
- [13] A. Regev, Algebras satisfying a Capelli identity, Israel Journal of Mathematics 33 (1979), 149–154.
- [14] A. Regev, Codimensions and trace codimensions of matrices are asymtotically equal, Israel Journal of Mathematics 47 (1984), 246-250.
- [15] A. Regev, On the identities of subalgebras of matrices over the Grassmann algebra, Israel Journal of Mathematics 58 (1987), 351-369.