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ABSTRACT

We consider associative PI-algebras over a field of characteristic zero.
The main goal of the paper is to prove that the codimensions of a verbally
prime algebra [11] are asymptotically equal to the codimensions of the
T-ideal generated by some Amitsur’s Capelli-type polynomials EyL (1].
We recall that two sequences an, b, are asymptotically equal, and we
write an =~ by, if and only if limp— oo (an /bn) = 1. In this paper we prove
that

cn(Mi(G)) 22 cn(Epz 42) and  cn(Miy(G)) = en(Bfz 2 o),

where G is the Grassmann algebra. These results extend to all verbally
prime Pl-algebras a theorem of A. Giambruno and M. Zaicev [9] giving
the asymptotic equality

o (M (F)) ~ Cn(Elzz,o)

between the codimensions of the matrix algebra My (F) and the Capelli
polynomials.
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1. Introduction

Let F be a field of characteristic zero and let F(X) be the free associative
algebra over F of countable rank on the set X = {x1,z2,...}. Recall that an
ideal I of F(X) is a T-ideal if it is invariant under all endomorphisms of F{X).
Let A be an associative algebra over F; an element f = f(z1,...,2,) € F(X)
is called a polynomial identity for A if f(a4,...,a,) =0 for any ey,...,a, € A.
If f is a polynomial identity for A we usually write f = 0 in A. Let T(A4) =
{f € F{X): f = 0in A} be the ideal of polynomial identities of A. When A
satisfies a non-trivial identity (i.e. T(A4) # (0)), we say that A is a Pl-algebra.
The connection between T-ideals of F'(X) and PI-algebras is well understood:
For any F-algebra A, T(A) is a T-ideal of F(X) and every T-ideal I of F(X)
is the ideal of identities of some F-algebra A, I = T(A).
For I = T(A) a T-ideal of F(X), we denote by var(I) or var(A) the variety
of all associative algebras having the elements of I as polynomial identities.
An important class of T-ideals is given by the so-called verbally prime T-
ideals. They were introduced by Kemer (see [11]) in his solution of the Specht
problem as basic blocks for the study of arbitrary T-ideals. Recall that a T-
ideal I C F(X) is verbally prime if f(z1,...,2,)9(%r41,-..,Zn) € I implies
that either f € I or g € I. A Pl-algebra A is called verbally prime if its T-ideal
of identities I = T(A) is verbally prime. Also, the corresponding variety of
associative algebras var(A) is called verbally prime. By the structure theory of
T-ideals developed by Kemer (see [11]) and his classification of verbally prime
T-ideals in characteristic zero, the study of an arbitrary T-ideal in characteristic
zero can be reduced to the study of the T-ideals of identities of the following
verbally prime algebras:

F,F(X), Mp(F), Mi(G), My 1(G) (k> 0,1>0),

where G = G +GW is the infinite-dimensional Grassmann algebra, M (F),
M}, (G) are the algebras of k x k matrices over F' and G, respectively, and

k l
M (G) = & GO g\
\GD GO

Recall that G is the algebra generated by a countable set {e;,ez,...} subject
to the conditions e;e; = —eje; for all i,5 = 1,2,..., and G = GO 4G is the
natural Zo-grading on G, where G(®) and G(1) are the spaces generated by all
monomials in the generators e; of even and odd length, respectively.
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It is well known that in characteristic zero every T-ideal is completely de-
termined by its multilinear elements. Hence, if P, is the space of multilinear
polynomials of degree n in 21, . . ., Z,, we study the sequence of spaces P,NT(4),
n=12,....

A wuseful approach to this study is through the representation theory of
the symmetric group S,. In fact, there is a natural action of S, on P,
leaving P, N T(A) invariant: if ¢ € S, and f(z1,...,2,) € P, then one
defines o f(x1,...,2,) = f(Zo(1),-++rTo(n)).- This in turn makes P,(A4) =
P,/(P,NT(A)) an S,-module.

The Sy,-character of P,(A), denoted by x,,(A), is called the n-th cocharacter of
A or of T(A). By complete reducibility, xn(A) decomposes into irreducibles and
let xn(A) = >y, MaXn, where x, is the irreducible S,-character associated
to the partition A of n and m, is the corresponding multiplicity. Through the
sequence of cocharacters {x,(A)}n>1 one can attach to A a numerical sequence
called the sequence of codimensions {c,(A)}n>1 of I or A, where

cn(A) = xn(A)(1) = dimp P, /(P, N T(A)),

n=12...

It is clear that A is a PI-algebra if and only if ¢,(A4) < n! for some n >
1. Regev in [12] proved that if A is an associative PI-algebra, then c,(A) is
exponentially bounded. Hence there exist constants «, § such that ¢, (A) < a8™
for any n > 1. It was recently proved by Giambruno and Zaicev, in [6] and [7],
that for a PI-algebra A

exp(A) = lim {/cq(A)

exists and is an integer; exp(A) is called the PI-exponent of the algebra A. For
the verbally prime algebras we have

exp(My(F)) = k%,  exp(My(G)) = 2k2, exp(Mi1(G)) = (k + )%

These results were first proved in [14], [15]. Improved proofs appeared later in
2], 7).

In [14] Regev obtained the precise asymptotic behavior of the codimensions
of the verbally prime algebra My (F). It turns out that

1

1y (K*-1)/2
en(Mi(F)) = O( =) k2

where C is a certain constant explicitly computed. For the other verbally prime
PI-algebras My(G), M, (G) there are only some partial results (see [2]).
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It turns out that it is in general a very hard problem to determine the precise
asymptotic behavior of such sequences.

In this paper we find a relation among the asymptotics of the codimensions
of the verbally prime T-ideals and the T-ideals generated by Amitsur’s Capelli-
type polynomials.

Now, if f € F(X) we denote by (f)r the T-ideal generated by f. Also for
V € F(X) we write (V)7 to indicate the T-ideal generated by V.

Let L and M be two natural numbers, let 2 = (L + 1)}{M + 1) and let u be a
partition of 72 with associated rectangular Young diagram, p = ((L+1)M+1) I 2.
In [1] the following polynomials were introduced denoting Amitsur’s Capelli-type
polynomials:

em,L(T,Y) = ep (21, a5 Y15 - -+, Yam1)
= Z Xu(0)To()Y1Ta(2) ** - Yr—1T o (),
oc€Ss

where X, (o) is the value of the irreducible character x, corresponding to the
partition g - 7 on the permutation . We note that for L = 0 we have u = (1%)
and

em,.(T,Y) = calT,9) = Z (SN 0)To(1)Y1T0(2) * * * Ya—1Zo(n)
o€Sh

is the Capelli polynomial.

Amitsur’s Capelli-type polynomials generalize the Capelli polynomials in the
sense that the Capelli polynomials characterize the algebras having the cochar-
acter contained in a given strip (see [13]) and Amitsur’s polynomials characterize
the algebras having a cocharacter contained in a given hook (see [1, Theorem
B)).

More precisely, given any integer d,! > 0 we denote by H(d,l) =
Ups1{A = (M1, A2,...) F n: Agpq < 1} the infinite hook of arm d and leg .
If the partition A lies in H(d,!) then its corresponding Young diagram D, is
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contained in the (d,!) hook.
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Note that H(d,0) is the set of all partitions with diagrams contained in the
strip of height d.

b, r

Regev proved (see [13, Theorem 2]) that, if A is a PI-algebra, then A satisfies

the Capelli identity ¢4 = 0 if and only if x,(4) = >,  maxx. This result
AGHA(}Zin—’l,O)

characterizes the cocharacter sequence of those PI-algebras satisfying a Capelli

polynomial. Thus the Capelli identities can be used as a test for a PI-algebra

to have cocharacter sequence lying in a strip.

Generalizing this approach Amitsur and Regev proved that the Capelli-type
polynomials e}, ; characterize the algebras whose cocharacter sequence lies in
the hook H(M,L). More precisely, if A is a Pl-algebra, then A satisfies the
Capelli-type identity e}, ; = 0 if and only if x,(A) = Z,\eﬁ'{?i,m maxx (see [1,
Theorem B|).

Let E}; ; denote the set of 2*~! polynomials obtained from e, 1, by evaluat-
ing the variables y; to 1 in all possible ways. Also, we denote by I'ys,1. = (E}; 1)1
the T-ideal generated by E}, ;. We also write Vi, = var(E3; ) = var(T'a,1),
cn(Er ) = en(Ta,) and exp(E}, 1) = exp(T'ay,1).

The following relations between the exponent of the Capelli-type polynomials
and the exponent of the verbally prime algebras are well known (see (3], [7]):

exp(Ejz o) = k? = exp(My(F)),
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exp(Ejs y2) = 2k* = exp(Mi(G)),
exp(Ejz 2 op1) = (k + 1)? = exp(Myi(G)).

Also in [9] it was proved that the codimensions of I'y2 o are asymptotically
equal to the codimensions of the verbally prime algebra My (F),

cn(Efz ) = cn(Crog1) = cn(Mi(F)).

In this paper we obtain an analogous result for the other verbally prime
algebras. Namely, we prove the following asymptotic equalities:

en(Efa j2) ~ en(Mr(G))  and  cn(Efaqpz o) = cn(Mii(G)).

2. Asymptotics for E}, ; 5, and My (G)

In this section we shall prove our main result about the Capelli-type polynomial
Ef2 2 oy Where k,1 € N, and the verbally prime algebra My,(G).

Throughout the paper we will denote by F a field of characteristic zero.
Recall that an algebra A is a superalgebra (or Z,-graded algebra) with grading
(A®, ANy if A = A} AW is a direct sum as a space of its subspaces A©, A
satistying

A AO 4 40 AW C 4O apnd 4@ AD 4 AW 40) ¢ 4D

If G = GO4+GW is the infinite-dimensional Grassmann algebra over F, then
G(A) = A® @ GO+ A0 ® GV is called the Grassmann envelope of A. We
recall that, by a result of Kemer (see [11, Theorem 2.3)), if V is a proper variety
then there exists a finite-dimensional superalgebra A such that V = var(G(A)).
In what follows the symbol “@” will denote a direct sum of algebras and the
symbol “+” will denote a direct sum of vector spaces.

The notion of reduced superalgebra was introduced in [9, Definition 1]|. Let
A=A & - ®A+J be a finite-dimensional superalgebra with A;,..., A,
simple superalgebras and J = J(A) the Jacobson radical of A; A is called
reduced if A;JAy---JA, # 0. Giambruno and Zaicev showed, also, that these
superalgebras can be used as building blocks of any proper variety. They proved
that (see [9, Theorem 1]} if V is a proper variety of algebras, then there exists
a finite number of reduced superalgebras Bj, ..., B; and a finite-dimensional
superalgebra D such that V = var(G(B;)®- - -®G(B;)®G(D)), where exp(V) =
exp(G(Bi)) = - -+ = exp(G(Bt)) and exp(G(D)) < exp(V).
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Now we analyze the case of a reduced superalgebra of special type. Recall
that My ;(F) denotes the simple superalgebra of (k + 1) x (k + ) matrices over

F with grading ((Fgl F(‘) ) , (F(‘) %2)), where Fi1, Fio, Foy, Fyy are
22 21

kxk, kxl, Ixkandl x [ matrices, respectively.

Throughout this section we assume that A = My (F)+J, where J = J(A)
is the Jacobson radical of the finite-dimensional superalgebra A. Note that
M;. ,(F) contains the unit and it certainly belongs to the even part in the grad-
ing. It is also known that J is homogeneous under the grading of A [11]. We
start with the following key lemmas.

LEMMA 1: The Jacobson radical J can be decomposed into the direct sum of
four My, i(F)-bimodules

J = Joo @ Jo1 @ J10 ® Ju1

where, for p,q € {0,1}, Jpq is a left faithful module or a 0-left module accord-
ing as p = 1 or p = 0, respectively. Similarly, Jpq is a right faithful module
or a 0-right module according as ¢ = 1 or ¢ = 0, respectively. Moreover, for
p,q,%,1 € {0,1}, JpgJqt C Jpi, JpgJit = 0 for q¢ # i and there exists a finite-
dimensional nilpotent superalgebra N such that Ji3 = My (F) ®p N (isomor-
phism of My ;(F)-bimodules and of superalgebras).

Proof:  The proof of the first part of the lemma is the same as that in [9,
Lemma 2]. Now let {j;,...,Js} be a basis of J;;. We can suppose that
all elements j, are homogeneous in the grading (either even or odd). Then
Jii = Span{ersjems: T, 8,m,t = 1,...k + 1,7 € {41,...,3s}} U da(j) =

f:ll eisjeri € Jii, then we put N = Span{du(j): s,t = 1,...,k+1,j €
{71,---,Js}} Notice that e,sjes, has the same grading as essjerm. Hence the
grading of d(j) is equal to the grading of j plus the grading of es; modulo 2
and all d,;(j) are homogeneous. Thus N = N @ N where N© is gen-
erated by all elements dy(j) with grading zero and N(!) is generated by the
elements with grading one. N commutes with My (F); in fact, e;mda(j) =
erm(NH eiseti) = ermemsieim = rsjerm and dat(§)erm = (X5 eigjer)erm
= ersjetrerm = €rsjerm. Moreover, if we define an F-linear map ¢: Jy; —
M 1(F)® N by (ersjemt) = ert @ dsm(j), then it is easy to show that ¢ is an
isomorphism of superalgebras. |

LEMMA 2: Let M = k? + 2 and L = 2kl with k,l € N. If B}, ; C Id(G(A)),
then Jig = Jo1 = (0)
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Proof: First we shall determine a polynomial e}(Z;7) which is a consequence
of E}, ; and then, by an opportune substitution of elements of G(A) in €} (Z; ),
we shall obtain the conclusion of the lemma. Let A = ((L + 1)M*1) }- n be the
partition of n = (M + 1)(L + 1). Let us consider the following Young tableaux
T, associated to the diagram D),

T ST (VES ) B R p (Ve
T3 (M) | | 2+L(MT)

T = : . .
Y (Y E ) O I AT (VER )

It is well known [10] that to T one associates two subgroups of Sy:

Rr, =S i(L1+(M+1),1+2(M+1),...,1+L(M+1)) x---
XSr+1(M +1,2(M +1),3(M +1),...,(L+1)(M + 1))

and
Cr, =Syl ., M+1) x - x Spyrp1(L+ LM +1),...,(L+1){M+1)),

where S;(f1, ..., B) stands for the symmetric group of degree ¢ on the elements
B1,-..,0:. Ry, (respectively Cr,) is the subgroup of S, leaving the rows
(respectively the columns) of T invariant. The polynomial corresponding to
T will be

er,(@) = Y por,(T)

PERT,
where
L+1
91, (T) = H( > ('_l)aiwa,-(1+(i—1)(M+1))“'xa,-(M+1+(i——1)(M+1)))
i=1 \No;€Smp1

and Spr41(14+ (6 —1)(M +1),...,4(M + 1)) is the symmetric group of degree
M + 1 on the elements 1 + (i — 1)(M + 1),...,4(M + 1). Here, g1, (Z) and
er, (T) are multilinear polynomials in & = {z,...,2,}. Moreover, gr, (T) is
alternating on each set of variables Z; = {Z14(i~1)(M+1)s- - - » TM+1+(i-1)(M+1) }
for i = 1,...,L + 1 and e, (%) is symmetric on each set of variables Z; =
{zs, Zip(m41)s- -2 Tivpa41) } for i =1,..., M + 1. Then, the polynomial

(7)) =en, @0 = Y pon,(T:7)
PERT,
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where
L+1 M+1
g @9 =[] ( > (—1)"i< 11 yj+(i-1)(M+1)$a,-(j+(i—1)(M+1))))
i=l “o;€SM41 j=1
is multilinear in T = {zy,...,2,} and § = {y1,...,¥Yn} and symmetric on each

set of variables T; fori = 1,...,M + 1.

From [1} it follows that e}(Z;7) is a consequence of e}, /(Z;7). Since E}; [(T;7)
C Id(G(A)), we have e}(Z;7) € Id(G(A)). Hence e}(57;5y) = 0 for all substi-
tutions of elements of G(A), 3T = {5%1,...,5T,} and 5§ = {57,,...,57,} with
57;,5y; € G(A) fori=1,...,nand j=1,...,n.

Let now €, ...,€e9, be an ordered basis of My ;(F)(® consisting of all matrix
units,

defell<i<k,1<j<k}U{e;lk+1<i<k+Lk+1<j<k+l}

andlet el,... el be an ordered basis of My ;(F)™) consisting of all matrix units
from the odd part of My (F),

eb€{el1<i<kk+1<j<k+}U{e lk+1<i<k+1,1<j<k}
Then we consider the following substitution:
3Tit(j—1)(M+1) = e? & g;-)i, j=1,...,L+1,
foralli=1,... M, where g?z- are all distinct elements from G,
Tim+1) =€ OQmy1, J=1,...,L,

with g}y, all distinct elements of G), and

SZ(L+1)(M+1) ‘= T10 ® G,
for any g € G and arbitrary ri9 € J1p. We take also

8Y; = enk ® Gi,

for all i = 1,...,n, where g; € GO UGM and ey, are some opportune matrix
units to fix the places.

By the properties of the polynomial e}(Z;%) and the particular substitutions
considered (recall that G{% = Z(G)), we have

€1 (5%;59) = (L + 1)) (ei;7m10) G = 0,
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where g € G, § # 0. Then e;;r10 =0 for all 4,5 € {1,...,k 4+ [}. Hence we can
say that ri9 = 0 for all 71 € J1p and the conclusion is obtained.
A similar proof shows that Jy; = (0). |

LEMMA 3: Let M = k?+12 and L = 2kl with k,l € N. Let J;1 &2 My (F)®N,
where N = NO4LNW a5 in Lemma 1. If E}r 1 € Id(G(A)), then NO ¢
Z(N), the center of N, and NV is anticommutative (or, which is the same, is
nil of degree 2).

Proof: We will construct a polynomial €3(Z;7) as in Lemma 2. Let p =
((L + 1)M+2) be a partition of n’ = (L + 1}(M +2) =n+ (L +1) and D, the
corresponding Young diagram. As in Lemma 2 we consider the Young tableaux

1 1+(M+2) o 1+L(M+2)
2 2+(M+2) e 2+L(M+2)
T,= :
M+1 | M+1D)+(M+2) | -+ [  M+1)+L(M+2)
M+2 2(M+2) e (L+1)(M+2)

and we determine the polynomial €3(Z;y) = er, (Z; 7). Then we make a similar
substitution as in Lemma 2: let €?,...,€3, be an ordered basis of matrix units
of My ;(F)© and el,...,e} an ordered basis of matrix units of My (F)1). We
put

STiq(j-1)(M+2) = 6? ® g?i, j=1,...,L+1,

foralli=1,...,M, where g; € G') and they all depend on distinct generators,

SE(M+1)+(-1)(M+2) =€ O Gipp1s J=1,---, L

and
S5Ti(My2) = e; ®9;M+2, j=1,...,L

where g}MH,ng-MH € G are all distinct,
ST(M+1)+L(M+2) = d1® g1 and  3T(piym42) = d2 ® ga,
where g1, 92 € GO UGW and dy,dy € N UND, Also we put
Y, ek ®¢g, t=1,...,n,

where g; € G©® UGW and eny, are some opportune matrix units.

Note that e5(Z;7) is a multilinear polynomial in the set of variables T and ¥;
it has similar properties of symmetrizing and alternating as e}(Z;%) in Lemma
2. Now, we consider four different cases:
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CASE 1: Let di,dy € N©_ In this case by the same reasons as in [9, Lemma
4] for the Capelli polynomial, we obtain

st = (00 2 (7)) e @] =0,

for some g € G, for any 7,5 € {1,...,k +1}. Then [dy,dy] =0, for all d;,d> €
N©).

Case 2: Let di € N and dy € N, Thus 5% (pr41)4 L(ar+2) = d1 ® g1, with
g1 € GO and ST(p+1)(M+2) = d2 @ ga, with g € G®). Since GO = Z(G) the
proof is similar as in case 1 and also [dy,dg] = 0.

Case 3: Let d; € N and dy € N©., We have the same conclusion as in
case 2.

Case 4: Let di,ds € N, In this case g1, g, € G, Hence

esteman) = (L 0¥ -2t (7,7 ey o) 0. =0

where a0 § = aff + fa is the Jacobi product, g € G and 4,5 € {1,...,k+{}.
Then didy + dody = 0 for all dy,dy € N, In particular, if dy = dy, we have
d? =0.

Thus the lemma is proved. |

LeMMA 4: If N* denotes the algebra obtained from N by adjoining a unit
element, then

T(G(Mi(F) ® N¥) = T(G(Ma(F))).

Proof:  The conclusion T{G(My(F)®NY)) C T(G(My ;(F))) is trivial because
1 € N'. We want to show that T(G(My,(F)) C T(G(My(F) ® N*))). Now,
let f(zx1,...,2,) be a multilinear polynomial in T(G(Mj,(F)) which is not
an identity of G(My,(F) @ N'). Then there exist o, ...,n € G(Mp(F) ®
NY) such that f(ai,...,a,) # 0. We may clearly assume that there exist
B,y Bn € Mey(FYOUM (F)Y and 71, . ..,9, € (N) @ @GOL(NHD g
GO u (NHD @ GO L (NHO) © GM) such that

(1) fB1®7,--, B @) #0.

Let 717 T ’77‘ € (N”)(D) ® G(0)+<Nﬂ)(1) ® G(l), ﬂl) e 7ﬁT € Mk,l(F)(O) and
Yratseo s € (NDD @ GOHN)O @ GW, 8,44, B € My y(F)®. Then
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we may assume that v, =nf ® ¢! + nl ® g}, fori =1,...,r and v, =n;®g;+
n?@g}, for j=r+1,...,n. From (1) we have

O#f(ﬂl ®’Ylaa:3n®7n)
=fBomM el +nl®gl),....0 (L ®+nl®gl))
= f(BL® ks Br ® 80, Brt1 ® 04141 B ® O,
k

where 6, € {n? ® ¢?,nl ® g}}, i = 1,...,r, and 8! € {n! ® ¢?,n? ® ¢}},
t=r+1,...,n. Hence there exists k such that

fo=F(B1 @8, .-, Ba @ E) £ 0.
More precisely, we have
O#f(ﬂ1®5?kvaﬂn®5711k)
=f(B1®(ny @ gl B ® (i ®gI),..., Bn ® (niy ® gi)),

where g,k € {0,1}, and jy =ip fork=1,....r, jp #igfork=r+1,...n.
Since from Lemmas 2 and 3 the nY’s commute with any elements and the n!’s
anticommute among themselves, we can write

(2) 0# f(B1® k-, B ® ) =b® (1 10) ® (917 gn),

with0#b€ M (F)and 0#n; - n, ®g1---go € N*®@G.
Now, if we substitute in (2) the elements &%, with distinct g € G for
k=1,...,r and 8}, with g} € GO for k =r +1,...,n, then also

FB1®g . Br @ Bri1 ® Gy P @) =bRg#D

for the same b € My (F) and 0# g=g?---g%-gl,,---gL € G. Hence f is not
an identity of G(My(F')) and the proof is complete. |

THEOREM 5: Let k,l € N. Then var(Ep 5 o) = var(Mii(G) ® G(D')),
where D' is a finite-dimensional superalgebra such that exp(D’) < (k +1)2. In
particular,

Cn(El:2+l2,2kl) =~ cn (M1 (G))-

Proof: Berele and Regev in (3] proved that

exp(Eg2+lZ’2kl) = k2 + 12 + Zkl = (k' + l)z
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Moreover, by [9, Theorem 1], there exist some finite-dimensional reduced super-
algebras A,..., A, such that

(3) Vi2 12 200 = var(G(Ay) @ - -- ® G(4;) & G(D)),

where exp(G(4;)) = -+ = exp(G(4s)) = exp(Virqzom) = (k +1)? and
exp(G(D)) < exp(Viz 12 2k1)-

Now, we analyze the structure of a finite-dimensional reduced superalgebra
A which satisfies E}, 412 2k1"

Let A be a finite-dimensional reduced superalgebra such that exp(G(4)) =
exp(Viz iz 21) and Efs 42 9y C© T(G(A)). We can write A=B1 @+ @ B,+J,
where B; are simple subalgebras and J = J(A) is the Jacobson radical of A.

Recall that a simple finite-dimensional superalgebra B; over F is isomorphic
to one of the following algebras (see [11]):

1. Mg, (F), with trivial grading (Mg, (F),0);

2. M, (D), where D = F @ tF and t? = 1, with grading (M,, (F),tM,,(F));

3. My, ., (F) with grading ((FM 0 ),( 0 Flz)), where Fy,, Fio,

0 Fy F 0
Fyq, Fyg are ky x ki, ky x 1, I; X k; and [; x I; matrices, respectively, k; > 0
and [; > 0.
Hence

G(A) =G(B1) & & G(By)+(J @ GO+JM g G,

where G(B;) is isomorphic to My, (F) or M, (G) or My, 1,(G).

Let ¢; be the number of superalgebras B; of the first type, let ¢; be the number
of superalgebras B; of the second type, and finally let t3 be the number of B;
of the third type, t; + t2 + t3 = g. Then by [8] and [6] there exists a minimal
(see definition in [8]) superalgebra C such that G(C) C G(A) and

T(GC) =11y,

where I; = T(G(D;)) and exp(G(C)) = exp(G(A4)) = (k +1)%. Hence G(A)
contains a subalgebra isomorphic to the following upper block triangular matrix
algebra:

G11 b3
UTy(ry,.rp)=| & ,
0 ... 0 Gpp

where G;; = G(D;) is one of the following: My, (F), M,,(G), Mk, 1,(G); and

ri=d;orr;=s;,0rr; =k; +1;.
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Since G(C) C G(A), we have that Ep; ;5 o, C T(G(C)).

Moreover, it is well known (see [14]) that the n-th cocharacter of the matrix
algebra My(F') lies in a strip of height d?. Also, it is clear that the n-th cochar-
acter of the verbally prime algebra M(G) lies in a hook of arm and leg s* and
the n-th cocharacter of My (G) lies in a hook of arm k2 + {% and leg 2kl (by
virtue of [1, Theorem B, it is enough to check that M,(G) satisfies e, ., =0
and My, (G) satisfies the identity €}z, 2 o, = 0, which is evidently true). By
applying the Littlewood-Richardson rule, Berele and Regev in [2, Theorem 1.1]
give a rule to calculate the n-th cocharacter of a product of T-ideals. By this rule
and by the results about the form of the n-th cocharacter of the verbally prime
algebras mentioned before, similar to [3, 9] we can estimate the size of a hook
and a square containing all diagrams which appear with non-zero multiplicity
in the decomposition of the n-th cocharacter of T(G(C)). More precisely,

(TEC) = T maxa

AFn
A€H!

where H' = H(k? +12,2kl) U D(k? 4+ 12 + m, 2kl + m) is the hook of arm k2 + [?
and leg 2kl plus a rectangle of size m? > (p—1)2. In this decomposition, because
we have p— 1 multiplication, there is one diagram Dj with non-zero multiplicity
and containing the rectangle of size (2kl + 1)¥**"+P=1_ Then, by [1, Theorem
B, Ex2yp2yp 20k £ T(G(C)). Taking into account Ejs . oy S T(G(C)) we
conclude p < 1. It means p = 1 and C € {My,(F), M,, (D), My, ;,(F)}. We have
G(C) is a subalgebra of the algebra G(A), where A is reduced and exp(G(4)) =
exp(G(C)). Then from [7] exp(G(4)) = Y7, dimB; = exp(G(C)). Also,
granting B; and C are simple superalgebras we obtain ¢ = 1 and can assume
B, =C.

Thus A = B+ J with B = My, (F) or B2 M, (D) or B = My, ;,(F). Since
exp(G(A)) = (k+1)? and G(A) corresponds to the hook H(k?+12,2kl) for [ # 0
(see [7]), we have k; =k, and l; = 1. Then

A2 My (F)F(JOLJW),

and
G(A) = My ,(0)+HJI® © GO LD o G)

with G(A) € Vi2.42 2. From Lemmas 1, 2 and 3 we have

A (M (F) + Ji) @ Joo = (Mi 1 (F) ® N¥) @ Joo.
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From Lemma 4, T(G(Mi,(F) ® N*)) = T(G(M (F))), then var(G(4)) =
var(M 1 (G)®G(Jpo)); here Jog is nilpotent. Hence, recalling the decomposition
given in (3), we get

Viz iz 2l = var(Mi, (G) @ G(D")),

where D' is a finite-dimensional superalgebra with exp(G(D')) < (k+1)2. Then,
from [9, Corollary 2] we have

en(Erz 2 op) = cn(Mi 1(Q)). 1

3. Asymptotics for E}; , and M,(G)

In this section we shall prove that the codimensions of I',2 ;2 are asymptotically
equal to the codimensions of the verbally prime algebra M,(G), s € N. Through-
out this section we assume that A = M,(D)+J, where M,(D) is the simple
reduced superalgebra of s x s matrices over D = F @ tF (t2 = 1) with grading
(M(F),tM(F)) and J = J(A) is the Jacobson radical of the finite-dimensional
superalgebra A. We start with the following lemma, which establishes a similar
result to Lemma 1.

LEMMA 6: The Jacobson radical J can be decomposed into the direct sum of
four M,(D)-bimodules

J=Joo® Jo1 B Ji0 ® J11

where, for p,q € {0,1}, Jpq is a left faithful module or a 0-left module according
as p = 1 or p = 0, respectively. Similarly, Jp, is a right faithful module or a
0-right module according as ¢ = 1 or ¢ = 0, respectively. Moreover, for p,q,1,1 €
{0,1}, JpgJq € Jpi, JpgJir = 0 for q # @ and there exists a finite-dimensional
nilpotent superalgebra N such that Ji1 = M(D)®Fr N (isomorphism of My(D)-
bimodules and of superalgebras).

Proof:  Similar to the proof of Lemma 1 the first part follows from the {9,
Lemma 2]. We only should note that we can choose a homogeneous system Q of
elements j € Ji1 generating the Ji; as a M,(D)-bimodule. Let Q = Q@ uQ®,
where Q(©) contains all even elements of Q and Q¥ contains the odd ones. Then
we consider as in Lemma 1 the elements din(j) = Y i €ikjemi, k,m=1,...,s,
j € @, which has the same grading type as j and commutes with elements of
M,(D). Take N = N @ N where

N© = Span{dem(j): j € QO k,m=1,...,5}
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and

N = Span{dim(j): 5 € QM k,m =1,...,s}.
We have that M,(D) ® N is a superalgebra with natural Zj-grading:
(My(F) ® NOJM(F) -t @ NU M(F) @ NU{M(F) -t @ N©), and the
D-linear map ¢: Ji1 — Ms(D) ® N, ¢: erijemq — €rq ® dim(j) is extended to

an isomorphism of the superalgebras. The lemma is proved. |

Now, we will use the polynomials e} (Z;7) and e3(Z;y) from Lemmas 2 and 3
to prove the following two lemmas.

LEMMA 7: Let M = L = s with s € N. If E}y . C Id(G(A)), then Jyg =
Jo1 = (0)

Proof: For M = L = s? we construct, as in Lemma 2, the polynomial €} (Z; ) as
a consequence of E}, ;. Now, we make the following substitution: let ey,...,€s
be an ordered basis of M,(F') consisting of all matrix units, for 1 <4 < M and
1<j<L+1 Weset

ST (jo)(M41) =€ ® Gy JF i
and
STit(i-1)(M+1) = € ® g5;

where g%; € G© and g}, € G). Also, we get

STj(M+1) = €j ®g31'(M+1)’ 1<j<L

and
ST(L+1)(M+1) ‘=T10® g
where 911'(M+1) e G, rip € Jyp and g € GO UGH.

As in Lemma 2 we put instead of the y’s the elements of the type e ® gy,
where e is a matrix unit and go € G(». Choosing the matrix units e we fix all
places for 5T’s.

As a result, after this substitution of elements of G(A4), we obtain

e} (sz,59) = (LYM2%e;jm0 © 9 =0,

where g € G. Thus rjg = 0 for all r1p € Jip. Analogously, Jo; = 0 and the
lemma, is proved. |
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LEMMA 8: Let M = L = s* with s € N. Let J;; ~ M,(D) ® N, where
N = N©® @ N®, as in Lemma 6. If E};;, C Id(G(A)), then N C Z(N),
the center of N, and N is anticommutative (or, which is the same, is nil of
degree 2).

Proof: As in Lemma 3 for M = L = s? we determine the polynomial e}(,7),
which is a consequence of E}, ;. Then we make the following substitution, sim-
ilar to the substitution in Lemma 7: let e;,. .., e; be an ordered basis consisting
of matrix units of My(F), for 1<i< M and1<j<L+1. Weput
STit(j—1)(M+1) ‘= € ® g?u J#1
and
STt (i-1)(M+1) =€ ® 93

where g% € G and gl € GO and they are all distinct. Moreover, we put
gJ'L b
SE(M+1)+G-1)(M+2) = € © Gy, 1< <L
5Ti(mr2) = € ® Qe 1<I<L
and
ST(M+1)+L(M+2) = d1 ® g1,
ST(L4+1)(M+2) = d2 ® g2,

where g;.)(MH) € G and 9imr2) € GW are all distinct, g;,g9, € G® UGW
and di,d; € N© UN®. Also, as in the previous lemmas, we substitute the
y’s with elements of the type e ® g9, where the e’s are distinct matrix units
and go € G taken to fix all places for 32’s. Hence we obtained the following
results: if di,d2 € N or d; € N©® and dz € N or d; € NV and d; € NO,
then similarly to [9, Lemma 4]

e3(3%,59) = K1 (L)M2e;[dy, dp] @ g = 0,
for some g € G and some natural K;. Thus [dy,d2] = 0. If dj,ds € N then
e3(5Z,57) = Ka(L)M2  (eii(dy1 0d2)) ® g =0, K, €N.

Hence dida + dady = 0 for all di,dy € NV and the lemma is proved. |

The proof of the following lemma, is the same as the proof of Lemma 4.
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LeEMMA 9: If N' denotes the algebra obtained from N by adjoining a unit
element, then

T(G(M,(D) ® N¥)) = T(G(M,(D)))-

THEOREM 10: Let s € N, s > 0. Then var(E}; ,») = var(Ms(G) © G(D")),
where D’ is a finite-dimensional superalgebra such that exp(D') < 2s%. In
particular,

Cn(E:{s?) ~ Cn(Ms(G))'

Proof: The first part of the theorem is the same as that of Theorem 5. Hence we
have a finite-dimensional reduced superalgebra A with exp(G(A)) = exp(Vs2 s2)
and By, , C T(G(A)), and A = B+J with B = My, (F) or B = M,, (D)
or B = My, ,(F). Since, by a result of Berele and Regev (3], exp(G(A)) =
exp(Vyz ¢2) = 252, we have

A= M (D)+(IJO+J0),

and
G(A) = M(G)HJID @ GO+J0 g Gy

with G(A) € Vy2 52. By Lemmas 6, 7 and 8 we have
A (My(D)4J11) ® Joo = (Mo (D) ® N*) @ Joo.

From Lemma 9, T(G(M,(D) ® N*)) = T(G(M,(D))). Then var(G(4)) =
var(M;(G) & G(Jyo)), where Jyy is nilpotent. Hence, we get

Vg2 g2 = var(M,(G) & G(D'")),

where D’ is a finite-dimensional superalgebra with exp(G(D’)) < 2s2. So, by
[9, Corollary 2], we have

enf( :2,32) ~ ¢, (Ms(G))
and the proof is complete. |
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