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ABSTRACT 

We consider associative Pl-algebras over a field of characteristic zero. 

The main goal of the paper is to prove that the codimensions of a verbally 

prime algebra [Ii] are asymptotically equal to the codimensions of the 

T-ideal generated by some Amitsur's Capelli-type polynomials E* M,L [i]. 
We recall that two sequences an, bn are asymptotically equal, and we 

write an ~- bn, if and only if limn~cr = 1. In this paper we prove 

that 

e * cn(Mk(C)) -- cn(E;~,k~) and c~(M~,,(G)) ~-- n(Ek~+,2,2k,), 

where G is the Grassmann algebra. These results extend to all verbally 

prime PI-algebras a theorem of A. Giambruno and M. Zaicev [9] giving 
the asymptotic equality 

E* cn(Mk(F)) ~- Cn( ks,O) 

between the codimensions of the matrix algebra Mk(F) and the Capelli 
polynomials. 
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1. I n t r o d u c t i o n  

Let F be a field of characteristic zero and let F(X) be the free associative 

algebra over F of countable rank on the set X = {Xl, x2, . . .}.  Recall that  an 

ideal I of F(X) is a T-ideal if it is invariant under all endomorphisms of F(X). 

Let A be an associative algebra over F; an element f = f (x l , . . . ,  Xn) E F(X) 
is called a polynomial identity for A if f ( a l , . . . ,  an) = 0 for any a l , . . . ,  an C A. 

If f is a polynomial identity for A we usually write f - 0 in A. Let T(A) = 
{f  C F(X): f - 0 in A} be the ideal of polynomial identities of A. When A 

satisfies a non-trivial identity (i.e. T(A) ~ (0)), we say that  A is a PI-algebra. 

The connection between T-ideals of F(X) and PI-algebras is well understood: 

For any F-algebra A, T(A) is a T-ideal of F(X)  and every T-ideal I of F(X)  

is the ideal of identities of some F-algebra A, I = T(A). 

For I = T(A) a T-ideal of F(X), we denote by var(I) or var(A) the variety 

of all associative algebras having the elements of I as polynomial identities. 

An important class of T-ideals is given by the so-called verbally prime T- 

ideals. They were introduced by Kemer (see [11]) in his solution of the Specht 

problem as basic blocks for the study of arbitrary T-ideals. Recall that  a T- 

ideal I C_ F(X} is verbally prime if f(Xl,...,xr)g(Xr+l,...,Xn) E I implies 

that  either f E I or g C I. A PI-algebra A is called verbally prime if its T-ideal 

of identities I = T(A) is verbally prime. Also, the corresponding variety of 

associative algebras var(A) is called verbally prime. By the structure theory of 

T-ideals developed by Kemer (see [11]) and his classification of verbally prime 

T-ideals in characteristic zero, the study of an arbitrary T-ideal in characteristic 

zero can be reduced to the study of the T-ideals of identities of the following 

verbally prime algebras: 

F,F(X),Mk(F),Mk(G),Mk,I(G) (k > O,l > 0), 

where G = G(~ (1) is the infinite-dimensional Grassmann algebra, Mk(F), 
Mk(G) are the algebras of k x k matrices over F and G, respectively, and 

k l 
Mk,l(G) ~- k ( G(~ G ( 1 ) ) .  

l G (11 G (~ 

Recall that  G is the algebra generated by a countable set {el ,e2, . . .}  subject 

to the conditions eiej = -ejei for all i,j = 1, 2 , . . . ,  and G = G(~ O) is the 

natural Z2-grading on G, where G (~ and G (1) are the spaces generated by all 

monomials in the generators ei of even and odd length, respectively. 
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It is well known that in characteristic zero every T-ideal is completely de- 

termined by its multilinear elements. Hence, if Pn is the space of multilinear 

polynomials of degree n in x l , . . . ,  x,~, we study the sequence of spaces PnNT(A) ,  

n = 1, 2, .... 

A useful approach to this study is through the representation theory of 

the symmetric group Sn. In fact, there is a natural action of Sn on Pn 

leaving Pn N T(A)  invariant: if a C Sn and f ( x l , . . . , x n )  E Pn then one 

defines cr f ( x l , . . . ,Xn )  = f(xa(1) , . . . ,Xa(n)) .  This in turn makes Pn(A) = 

P,~/(Pn n T(A))  an Sn-module. 

The Sn-character of Pn (A), denoted by X~ (A), is called the n-th cocharacter of 

A or of T(A).  By complete reducibility, )in(A) decomposes into irreducibles and 

let X,~(A) = ~A~-n m)~)~, where X~ is the irreducible Sn-character associated 

to the partition/~ of n and m~ is the corresponding multiplicity. Through the 

sequence of cocharacters {x~(A)}n>_l one can attach to A a numerical sequence 

called the sequence of codimensions {cn(A)}n_>l of I or A, where 

cn(A) = )/~(A)(1) = dimFPn/(P,~ n T(A)) ,  

n = 1, 2, . . . .  

It is clear that A is a PI-algebra if and only if cn(A) < n! for some n > 

1. Regev in [12] proved that if A is an associative PI-algebra, then cn(A) is 

exponentially bounded. Hence there exist constants a, ~ such that cn(A) <_ c~  n 

for any n > 1. It was recently proved by Giambruno and Zaicev, in [6] and [7], 

that for a PI-algebra A 

exp(d) = lim 
n---~ OO 

exists and is an integer; exp(A) is called the PI-exponent of the algebra A. For 

the verbally prime algebras we have 

exp(Mk(F)) = k 2, exp(Mk(G)) = 2k 2, exp(Mk,~(G)) = (k +/)2. 

These results were first proved in [14], [15]. Improved proofs appeared later in 

[2], [7]. 
In [14] Regev obtained the precise asymptotic behavior of the codimensions 

of the verbally prime algebra Mk(F).  It turns out that 

( 1 )  (k2-1)/2k2n ' 
cn(Mk(F)) "~ C -~ 

where C is a certain constant explicitly computed. For the other verbally prime 

PI-algebras Mk(G), Mk,t (G) there are only some partial results (see [2]). 
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It turns out that it is in general a very hard problem to determine the precise 

asymptotic behavior of such sequences. 

In this paper we find a relation among the asymptotics of the codimensions 

of the verbally prime T-ideals and the T-ideals generated by Amitsur's Capelli- 

type polynomials. 

Now, if f �9 F<X) we denote by (f)T the T-ideal generated by f.  Also for 

V C F<X) we write (V)T to indicate the T-ideal generated by V. 

Let L and M be two natural numbers, let/ t  = (L + 1)(M + 1) and let # be a 

partition of ~ with associated rectangular Young diagram, # = ((L+I)  M+I) ~-/~. 

In [1] the following polynomials were introduced denoting Amitsur's Capelli-type 

polynomials: 

e 'M,  L ( 'x ,  y )  "----- e 'M,  L ( x l ,  . . . , x f i  ; y l ,  . . . , y ~ - I  ) 

= Z Xt~(a)x'~(1)YlX'7(2)"'Y~-lXa(r ' 
a6S~ 

where X, (a) is the value of the irreducible character Xt, corresponding to the 

partition # F- ~t on the permutation a. We note that for L -- 0 we have # -- (1 n) 

and 

e'M, L (~, ~) ---- C~ (~, ~) = ~ (sgn cr)xa(1)ylXa(2).., y~-lXa(~) 
a6S~ ,  

is the Capelli polynomial. 

Amitsur's Capelli-type polynomials generalize the Capelli polynomials in the 

sense that the Capelli polynomials characterize the algebras having the cochar- 

acter contained in a given strip (see [13]) and Amitsur's polynomials characterize 

the algebras having a cocharacter contained in a given hook (see [1, Theorem 

S]). 

More precisely, given any integer d,l _ 0 we denote by H(d,l) = 
[J~>I{A = (A1,A2,...) ~- n: Ad+I _< l} the infinite hook of arm d and leg I. 

If the partition A lies in H(d, I) then its corresponding Young diagram D~ is 
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contained in the (d, l) hook. 

- - J  l 
d 

Note that H(d,  0) is the set of all partitions with diagrams contained in the 

strip of height d. 

I T 
d 

Regev proved (see [13, Theorem 2]) that, if A is a PI-algebra, then A satisfies 

the Capelli identity Cd -- 0 if and only if ) in(A) = ~ m:~)i;~. This result 
)~t-n, 

AeH(d-- l ,0)  

characterizes the cocharacter sequence of those PI-algebras satisfying a Capelli 
polynomial. Thus the Capelli identities can be used as a test for a PI-algebra 
to have cocharacter sequence lying in a strip. 

Generalizing this approach Amitsur and Regev proved that the Capelli-type 

polynomials e'M, L characterize the algebras whose cocharacter sequence lies in 

the hook H ( M ,  L).  More precisely, if A is a PI-algebra, then A satisfies the 
Capelli-type identity e* ~ .  M,L ~- 0 if and only if ) in(A) = E AEH(M,L ) m)~)i)~ (see [1, 

Theorem B]). 

Let E* denote the set of 2 a-1 polynomials obtained from e* by evaluat- M,L M,L 
ing the variables Yi to 1 in all possible ways. Also, we denote by [~M,L = (E*M,L)T 

the T-ideal generated by E*M,L. We also write YM,L = var(E~/,L) ---- var(FM,L), 

C,~(E~,L) = cn(FM,L) and exp(E~4,L ) = exp(FM,L). 
The following relations between the exponent of the Capelli-type polynomials 

and the exponent of the verbally prime algebras are welI known (see [3], [7]): 

exp(E;2,0 ) = k 2 = e x p ( M k ( F ) ) ,  
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exp(E;~,k2) = 2k2 = exp(Mk (G)), 

exp(E;2+/2,2k/) ----- (k + l) 2 = exp(Mk,l(G)). 

Also in [9] it was proved that the codimensions of Fk2,0 are asymptotically 

equal to the codimensions of the verbally prime algebra Mk(F), 

cn(E;2,o ) = cn(Ck2+l) ~-- cn (Mk(F) ) .  

In this paper we obtain an analogous result for the other verbally prime 

algebras. Namely, we prove the following asymptotic equalities: 

Cn(E;2k2 ) "~ cn(Mk(G)) and cn(E;2+t2,2kL ) ~-- cn(Mk,l(G)). 

2. A s y m p t o t l c s  for E* a n d  Mk,l(G) k2 +12,2kl 

In this section we shall prove our main result about the Capelli-type polynomial 

E* where k, l E N, and the verbally prime algebra Mk,z(G). k2~-12,2kl 
Throughout the paper we will denote by F a field of characteristic zero. 

Recall that an algebra A is a superalgebra (or Z2-graded algebra) with grading 

(A (~ A (1)) if A = A(~ (1) is a direct sum as a space of its subspaces A (~ A (1) 

satisfying 

A(~ (~ + A(1)A (1) C_ A (~ and A(~ (1) + A(1)A (~ c_ A (1). 

If G = G(~ O) is the infinite-dimensional Grassmann algebra over F,  then 

G(A) = A (~ | G(~ (1) @ G (1) is called the Grassmann envelope of A. We 

recall that, by a result of Kemer (see [11, Theorem 2.3]), if ~) is a proper variety 

then there exists a finite-dimensional superalgebra A such that • = var(G(A)). 

In what follows the symbol "G" will denote a direct sum of algebras and the 

symbol "$" will denote a direct sum of vector spaces. 

The notion of reduced superalgebra was introduced in [9, Definition 1]. Let 

A = A1 |  @ A r S J  be a finite-dimensional superalgebra with A 1 , . . . , A r  

simple superalgebras and J = J(A) the Jacobson radical of A; A is called 

reduced if AIJA2""  JAr r O. Giambruno and Zaicev showed, also, that these 

superalgebras can be used as building blocks of any proper variety. They proved 

that (see [9, Theorem 1]) if 12 is a proper variety of algebras, then there exists 

a finite number of reduced superalgebras B1, . . . ,  Bt and a finite-dimensional 

superalgebra D such that ~ -- var(G(B1) G ' "  GG(Bt) OG(D)) ,  where exp(~) = 

exp(G(B1)) . . . . .  exp(G(Bt)) and exp(G(D)) < exp('P). 
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Now we analyze the case of a reduced superalgebra of special type. Recall 

that Mk,l(F) denotes the simple superalgebra of (k + l) x (k + l) matrices over 

F with grading ( ( F 0 1  F220 ) ,  ( 0F21 FI2))O , whereF~1, F12, F21, F22are 

k x k, k • l, 1 • k and l • I matrices, respectively. 

Throughout this section we assume that A -- Mk,z(F)+J,  where J = J(A)  

is the Jacobson radical of the finite-dimensional superalgebra A. Note that  

Mk,l(F) contains the unit and it certainly belongs to the even part in the grad- 

ing. It is also known that J is homogeneous under the grading of A [11]. We 

start with the following key lemmas. 

LEMMA 1: The Jacobson radical J can be decomposed into the direct sum of 

four Mk,l ( F)-bimodules 

J -- Joo �9 Jol �9 Jlo �9 J l l  

where, for p, q E {0, 1}, Jpq is a left faithful module or a O-left module accord- 

ing as p = 1 or p = O, respectively. Similarly, Jpq is a right faithful module 

or a O-right module according as q = 1 or q = O, respectively. Moreover, for 

p, q, i, l E {0, 1}, JpqJqz C_ Jpz, JpqJiz = 0 for q ~ i and there exists a finite- 

dimensional nilpotent superalgebra N such that J l l  ~ Mk,~(F) | N (isomor- 

phism of Mk,l ( F)-bimodules and of superaJgebras). 

Proo~ The proof of the first part of the lemma is the same as that  in [9, 

Lemma 2]. Now let { j l , . . . , j : }  be a basis of J l l .  We can suppose that 
all elements jq are homogeneous in the grading (either even or odd). Then 

J1] = Span{er~jemt: r , s , m , t  = 1 , . . . , k + l , j  E {Jl , . . . ,J~}}.  If ds~(j) = 
Ek+l 

~=lei~jet~ E Jll ,  then we put N = Span{dst(j): s , t  = 1 , . . . , k  + l , j  E 

{Jl , . . - , Js}}.  Notice that  ersjetm has the same grading as estjerm. Hence the 
grading of dst(j) is equal to the grading of j plus the grading of est modulo 2 
and all dsr are homogeneous. Thus N = N (~ @ N (1), where N (~ is gen- 

erated by all elements dst(j) with grading zero and N (1) is generated by the 

elements with grading one. N commutes with Mk,z(F); in fact, e~mdst(j) = 
~v'-~k+l {~"~k+l 

erm(2_.,i=l eisjeti) = ermemsjetm = ersjetm and dst(j)erm = ~z-.,i=l eisjeti)erm 

= er~jetrerm = e~sjetm. Moreover, if we define an F-linear map ~: J n  --+ 

Mk,t(F) |  by ~(ersjemt) = ere | then it is easy to show that  ~ is an 

isomorphism of superalgebras. | 

LEMMA 2: Let M = k 2 +12 and L = 2kl with k , l  C N. IF E*M, L C_ Id(G(A)) ,  

then Jlo = Jm = (0). 
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Proos First we shall determine a polynomial e~ (~; ~) which is a consequence 

of E'M, L and then, by an opportune substitution of elements of G(A) in e~ (~; ~), 

we shall obtain the conclusion of the lemma. Let A = ((L + 1) M+I) k- n be the 

partition of n = (M + 1)(L + 1). Let us consider the following Young tableaux 

T~ associated to the diagram D~, 

T~ = 

1 1+(M+1)  
2 2 + ( M + l )  

�9 o 

M + I  2(M+l)  

�9 .. I + L ( M + I )  
�9 .. 2+L(M+I )  

�9 .. ( L + I ) ( M + I )  

It is well known [10] that to T;~ one associates two subgroups of Sn: 

RT~ = SL+I(1,1 + (M + 1),1 + 2(M + 1 ) , . . . , 1  + L(M + 1)) x . . .  

• 1, 2(M + 1) ,3(M + 1 ) , . . . ,  (L + 1 ) ( M +  1)) 

and 

CT~ = S M + I ( 1 , . . . , M +  1) x . . .  x SM+I(1 + L(M + 1 ) , . . . , ( L +  1)(M + 1)), 

where St ( i l l , . . . ,  fit) stands for the symmetric group of degree t on the elements 

/31,..., ~t. RT~ (respectively CT~) is the subgroup of Sn leaving the rows 
(respectively the columns) of TA invariant. The polynomial corresponding to 

T~ will be 
= 

where 

pERT), 

and SM+I(1 -4- (i - 1)(M + 1 ) , . . . ,  i(M + 1)) is the symmetric group of degree 

M + 1 on the elements 1 + (i - 1)(M + 1) , . . .  ,i(M + 1). Here, gT~(~) and 

eT~(~) are multilinear polynomials in E = {Zl , . . . ,Xn}.  Moreover, gT~(E) is 

alternating on each set of variables xi = {Xl+(i-1)(M+l),..., XM+I+(i-1)(M+I)} 
for i = 1 , . . . , L  + 1 and eTa(E) is symmetric on each set of variables xi = 

{Xi, Xi+(M+I),... , Xi+L(M+I) } for i = 1 , . . . ,  M + 1. Then, the polynomial 

pERT~ 

L+I ) 
agT~ (~) = (--1) X,~,O+(i_I)(M+I)) '''X,~,(M+~+(~_I)(M+~)) 

i=1 aiE M+I 
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where 

g~,(x;Y) = H ~ ( - 1 ) ~ i [  I I  Yj+(i-1)(i+l)xo~(j+(i-,)(U+,)) 
i-~1 a i 6 S M + l  " j~l  

is multilinear in �9 = { x l , . . . ,  xn} and y = { Y l , . . . ,  Yn} and symmetric on each 

set of variables xi for i -- 1 , . . . ,  M + 1. 

From [1] it follows that eT(~; Y) is a consequence of e*M,L(~; y). Since E*M,L(~; y) 
C_ Id(G(A)),  we have eT(~;y ) 6 Id(G(A)).  Hence eT(~-~;~yy ) = 0 for all substi- 

tutions of elements of G(A), ~-~ = {~-i l , . . . ,  Y~n} and ~y = {~Yl,.- . ,  ~YYn} with 

sxi, syj 6 G(A) for i = 1 , . . . , n  and j = 1 , . . . , n .  

Let now e~  e ~ be an ordered basis of Mk,~(F) (~ consisting of all matrix 

u n i t s ,  

e ~ 6 {ei,jll < i  < k, 1 <_j <_ k } U { e i , j l k +  1 < i  < k + l , k +  1 <_j < k + l }  

and let e~ , . . . ,  e~ be an ordered basis of Mk,t (F) (1) consisting of all matrix units 

from the odd part of Mk,t(F), 

e~ 6 {ei,jll < i < k ,k  + 1 <_j <_ k + l }  U{ei, j lk + 1 < i < k + l , 1  < j <_ k}. 

Then we consider the following substitution: 

- -  o |  o sxi+(j-1)(M+l) := ei gji, j = 1 , . . . , L +  1, 

for all i = 1 , . . .  M, where g~ i are all distinct elements from G (~ 

1 |  8"-Xj(M-}-I) :=  ej gjM+l, j = 1 , . . . , L ,  

with 1 gjM+l all distinct elements of G (1), and 

8-X(L_}_I)(M~_I) := rio | g, 

for any g 6 G and arbitrary rio E Jlo. We take also 

S-Yi := ehk | gi, 

for all i = 1 , . . . ,  n, where gi E G (~ t3 G(1) and ehk are some opportune matrix 

units to fix the places. 

By the properties of the polynomial e~ (~; y) and the particular substitutions 

considered (recall that G (~ = Z(G)),  we have 

e l ( s z  , sy) = ((L + 1)!)M(eijrlo) | ~ = 0, 
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where ~ E G, ~ r 0. Then e~jrlo = 0 for all i , j  C {1 , . . . ,  k + l}. Hence we can 

say that  ri0 = 0 for all rl0 E Jlo and the conclusion is obtained. 

A similar proof shows that  J01 = (0). I 

LEMMA 3: Let M = k2 +l  2 and L = 2kl with k , l  E N. Let J l l  ~ Mk,z (F) |  

where N = N(~  (1), as in Lemma 1. I f  E'M, L C_C_ Id(G(A)),  then N (~ C_ 

Z (N) ,  the center of N, and N 0) is anticommutative (or, which is the same, is 

nil of degree 2). 

Proo~ We will construct a polynomial e~(5; ~) as in Lemma 2. Let # = 

((L + 1) M+2) be a partition of n' = (L + 1)(M + 2) = n + (L + 1) and D u the 

corresponding Young diagram. As in Lemma 2 we consider the Young tableaux 

1 l+ (M+2)  . . .  
2 2+(M+2) . . .  

M + I  ( M + I ) + ( M + 2 ) . . .  
M+2 2(M+2) . . .  

T .  = 

I+L(M+2)  
2+L(M+2) 

(M+I)+L(M+2)  
(L+I)(M+2) 

and we determine the polynomial e~ (~; ~) = @, (5; ~). Then we make a similar 

substitution as in Lemma 2: let e ~  e ~ be an ordered basis of matrix units 

of Mk,l(F) (~ and e~ , . . . ,  e}~ an ordered basis of matrix units of Mk,l(F) (1). We 

put 
- -  0 0 
8Xi+(j-1)(M+2) := ei @ gji, j = 1 , . . . ,  L + 1, 

for all i -- 1 , . . . ,  M, where g~ i E G (~ and they all depend on distinct generators, 

- -  1 1 
8X(M+I)+(j_I)(M+2 ) : :  ej | gjM+l, j = 1 , . . . ,  L 

and 
- -  1 @ 1  
8Xj(M+2) :• e j  gjM+2, j = 1 , . . . , L  

1 1 G (1) all distinct, where gjM+l,gjM+2 C are 

8--X(M+I)WL(M+2 ) := dl | 91 and 8~(L+I)(M+2) : =  d2 | g2, 

where gl, g2 E G (~ U G (1) and dl, d2 E N (~ U N (1). Also we put 

8---y i : =  ehk | gi, i = 1 , . . . , n ,  

where 9i E G (0) U G (1) and ehk are some opportune matrix units. 

Note that  e~ (5; ~) is a multilinear polynomial in the set of variables ~ and ~; 

it has similar properties of symmetrizing and alternating as e~ (5; ~) in Lemma 

2. Now, we consider four different cases: 
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CASE 1: Let dl,d2 E N (~ In this case by the same reasons as in [9, Lemma 

4 t for the Capelli polynomial, we obtain 

e~(s--~,s--~) = ((L + 1)!) M" 2 L" (k  + l  + 2)  2 �9 [(eij [dl, d21) | g] = 0, 

for some g E G, for any i , j  E { 1 , . . . , k  + /} .  Then [dl,d2] = 0, for all dl,d2 E 
N(0). 

CASE 2: Let dl E N (~ and d~ E N (2). Thus -ff-X(MTI)TL(M+2) = d l  | with 

gl E G (~ and Yx(/+I)(M+2) = d2 | g~, with g2 E G (1). Since G (~ -- Z(G) the 

proof is similar as in case 1 and also Ida, d2] = 0. 

Let dl E N (~) and d~ E N (~ We have the same conclusion as in CASE 3: 

case 2. 

CASE 4: Let dl, d2 E N (1). In this case gl,g2 E G 0). Hence 

e~(Y~,~y) = ((L + 1)!) M. 2 L. (k  + l 2 + 2 ) .  [(eij(dl 0 d2))| g] 0, 

where ~ o/3 = (~3 + /~a  is the Jaeobi product, g E G and i , j  E {1 , . . . ,  k + l}. 

Then did2 + d2dl = 0 for all dl,d2 E N (1). In particular, if dl = d2, we have 

d~ = 0. 

Thus the lemma is proved. | 

LEMMA 4: If  N ~ denotes the algebra obtained from N by adjoining a unit 
element, then 

T(G(Mk,z(F) @ N~)) = T(G(Mk,I(F))). 

Proof." The conelnsion T(G(Mk,z(F)| c_ T(G(Mk,I(F))) is trivial because 

1 E g ~. We want to show that T(G(Mk,I(F)) C_ T(G(Mk,I(F) | N~))). Now, 

let f (x l , . . . ,Xn)  be a multilinear polynomial in T(G(Mk,z(F)) which is not 

an identity of G(Mk,~(F) | N~). Then there exist a l , . . . ,  an E G(Mk,z(F) | 
N ~) such that f ( a l , . . . , a n )  # 0. We may clearly assume that there exist 

31,. . . ,  fin E Mk,l(F)(~ and 71 , . . . ,  % E ((N~) (~ |176 (1) | 
GO)) U ((N~) (~) | G(~ (~ | G (1)) such that 

(1) f(31 |  |  # 0. 

Let 7 1 , . . - , %  E (N~) (~ | G(~ (1) | G (1), 31,... ,/?,. E Ma,l(F)(~ and 

7~+1,...  ,%~ E (N~) O) | G(~ (~ | G (1), 3~+~,.-- ,3n E Mk,~(F) (1). Then 
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o o 1 1 1 0 we may assume that  "yi = n i | gi + ni | gi, for i = 1 , . . . ,  r and "yj = nj | gj + 
o 1 nj |  f o r j  = r +  1 , . . . , n .  From (1) we have 

o # f(~l  | ~1, . . . ,  ~n | ~n) 
1 o o , g l ) )  --- f(/~l | (n o @gO + n~ |  | (n n |  + nn 

-- E f(/31 | 50 0 1 1 -- lk, �9 �9 .,/~r | 5rk,flr+l | (~r+lk, . . .  ,~n | (~nk), 
k 

1 0 1 where 5iOk C {n o | gO ni | gl} ,  i = 1 , . . . , r ,  and 5~ E {n~ | go,hi @ gi}, 

i = r + 1 , . . . ,  n. Hence there exists k such that 

]k = f(/~l | 51~ | 5~k ) ~ 0. 

More precisely, we have 

o # f ( ~ .  5%,..., ~n | 5~k) 

= f ( ~  | (n~l | ~{1),... ,~r | ( 4  ~ | g~/~),... ,~n | ( ~  | g~)),  

where i k , j k  C {0,1}, and jk = ik for k = 1 , . . . , r ,  jk ~ ik for k = r +  1 , . . . n .  

Since from Lemmas 2 and 3 the n/~ commute with any elements and the 1, n i s 

anticommute among themselves, we can write 

(2) 0 # f(/~l | 5~ . . . , /3n | 5~k) = b|  ( n l ' " n n )  | ( g , ' " g n ) ,  

with 0 ~ b C Mk, l (F)  and 0 ~ n l . . . n ~  |  C N~ | G. 

Now, if we substitute in (2) the elements 5~ ~ with distinct gO E G (~ for 

k = 1 , . . . ,  r and 5i~ with g/1 E G O) for k = r + 1 , . . . ,  n, then also 

o 1 1 f(~l | ao,... ,9~ | gr,9~+l | g~+l,... ,~n | = b |  # o 

for the same b E Mk, l (F)  and 0 ~ g -- gO...gO, g~+l"" "g~ E G. Hence f is not 

an identity of G(Mk, t (F))  and the proof is complete. | 

THEOREM 5: Let k,l  E N. Then var(E~+l~,2~t ) = var(Mk,t(G) ~ G(D')) ,  

where D'  is a [inite-dimensional superalgebra such that exp(D')  < (k + l)2. In 

particular, 

~n(E;~+,~.~) ~- r 

Proof: Berele and Regev in [3] proved that  

exp(E~+t~,2kt ) = k ~ + l ~ + 2kl = (k + l) ~. 
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Moreover, by [9, Theorem 1], there exist some finite-dimensional reduced super- 

algebras A1, . . . ,  As such that 

(3) Yk~+Z~,2kt = var(G(Ax) |  | G(As) ~ G(D)), 

where exp(G(dl) )  . . . . .  exp(G(As)) = exp(Vk~+t2,2kt) = (k + l) 2 and 

exp(G(D)) < exp(Vk2+t2,2kt). 

Now, we analyze the structure of a finite-dimensional reduced superalgebra 

A which satisfies E~+l~,2kz. 

Let A be a finite-dimensional reduced superalgebra such that  exp(G(A)) = 

exp(])k2+t~,2kz ) and E* C T(G(A)). We can write A = B1 |  G Bq+J, k 2 + 1 2 , 2 k l  - -  

where Bi are simple subalgebras and J = J(A) is the Jacobson radical of A. 

Recall that a simple finite-dimensional superalgebra Bi over F is isomorphic 

to one of the following algebras (see [11]): 

1. Mdi(F), with trivial grading (Md~ (F), 0); 
2. Ms~ (D), where D = F @ tF and t 2 = 1, with grading (Ms~ (F), tMs~(F)); 

3. Mk~,t~ (F) with grading ( ( / ~ 1  F220) , (0F21 F12))0 , where Fll ,  F12, 

F21, F22 are ki • ki, ki • li, li • ki and li • li matrices, respectively, ki > 0 

and li > 0. 

Hence 

G(A) = G(B~) 0 . . .  ~ G(Bq)~-(J (~ | G(~ + J (1) | G(~)), 

where G(Bi) is isomorphic to Md,(F) or Ms~(G) or Mk~,l~(G). 

Let tl be the number of superalgebras Bi of the first type, let t2 be the number 
of superalgebras Bi of the second type, and finally let t3 be the number of Bi 

of the third type, tl + t2 + t3 -- q. Then by [8] and [6] there exists a minimal 
(see definition in [8]) superalgebra C such that  G(C) C_ G(A) and 

T(G(C)) = I~. . .  Ip, 

where Ii = T(G(Di)) and exp(G(C)) -- exp(G(A)) = (k +/ )2 .  Hence G(A) 

contains a subalgebra isomorphic to the following upper block triangular matrix 

algebra: 

( GH * 

UTp(rl , . . . ,  rp) = 0 ". 

0 ... 0 Gpp 

where Gii = G(Di) is one of the following: Md~(F), Ms~(G), Mk,z~(G); and 

ri -- di or ri -- si or ri = ki + li. 
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Since G(C) c_ G(A), we have that  E*k2+t~,2kZ C_ T(G(C)). 
Moreover, it is well known (see [14]) that  the n-th cocharacter of the matrix 

algebra Md(F) lies in a strip of height d 2. Also, it is clear that  the n-th cochar- 

acter of the verbally prime algebra Ms (G) lies in a hook of arm and leg s 2 and 

the n-th cocharacter of Mk,l(G) lies in a hook of arm k s + 12 and leg 2kl (by 

virtue of [1, Theorem B], it is enough to check that  M~(G) satisfies e* = 0 82~S 2 

and Mk,z(G) satisfies the identity e* k2+t2,2kl -- -- 0, which is evidently true). By 

applying the Littlewood-Richardson rule, Berele and Regev in [2, Theorem 1.1] 

give a rule to calculate the n-th cocharacter of a product of T-ideals. By this rule 

and by the results about the form of the n-th cocharacter of the verbally prime 

algebras mentioned before, similar to [3, 9] we can estimate the size of a hook 

and a square containing all diagrams which appear with non-zero multiplicity 

in the decomposition of the n-th cocharacter of T(G(C)). More precisely, 

Xn(T(G(C))) = E mAXA 
A~-n 

A E H  / 

where H '  = H ( k 2 + l 2, 2kl) U D( k 2 + l ~ + m, 2kl + m) is the hook of arm k 2 + 12 

and leg 2kl plus a rectangle of size rn 2 > (p-1)  2. In this decomposition, because 

we have p -  1 multiplication, there is one diagram D~ with non-zero multiplicity 

and containing the rectangle of size (2kl + 1) k2+z2+p-1. Then, by [1, Theorem 

B], E~2+12+p_2,2kl ~: T(G(C)). Taking into account E~2+12,2kl C T(G(C)) we 

conclude p < 1. It means p = 1 and C C {Mdl (F), Ms~ (D), Mki,h (F)}. We have 

G(C) is a subalgebra of the algebra G(A), where A is reduced and exp(G(A)) = 

exp(G(C)). Then from [7] exp(G(A)) q = E i = l d i m B i  = exp(C(C)). Also, 

granting Bi and C are simple superalgebras we obtain q = 1 and can assume 

BI ~-C. 
Thus A = B + J with B ~- Mdl (F) or B "~ Ms1 (D) or B ~ Mkl,h (F). Since 

exp(G(A)) = (k+/)  2 and G(A) corresponds to the hook H(k 2 +/2, 2kl) for I 7~ 0 

(see [7]), we have kl = k, and 11 = I. Then 

A "~ Mk (F)4(J(~ (1)) 

and 

G(A) ~- Mk,l(G)4(J (~ | G(~ (1) | G (1)) 

with G(A) c 12k2+12,2kZ. From Lemmas 1, 2 and 3 we have 

A -~ (Mk,z(F) + gn) @ Joo ~- (Mk,l(F) | N ~) | Joo. 
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From Lemma 4, T(G(Mk,~(F) | N~)) = T(G(Mk,z(F))) ,  then var(G(A)) = 

var(Mk,t (G)| here J0o is nilpotent. Hence, recalling the decomposition 

given in (3), we get 

Vk~+~2,2m = var(Mk3(G) | G(D')) ,  

where D' is a finite-dimensional superalgebra with exp(G(D')) < (k+l)  2. Then, 

from [9, Corollary 2] we have 

c,,(Ek2+~,2kl) ~-- cn(Mk,,(C)). ' 

3. A s y m p t o t i c s  for E* a n d  Ms(G) 82~82 

In this section we shall prove that  the codimensions of Fs2,s2 are asymptotically 

equal to the codimensions of the verbally prime algebra M~ (G), s �9 N. Through- 

out this section we assume that  A = M ~ ( D ) 4 J ,  where Ms(D)  is the simple 

reduced superalgebra of s • s matrices over D = F | t F  (t e = 1) with grading 

(Ms (F), tMs (F)) and J = J (A)  is the Jacobson radical of the finite-dimensional 

superalgebra A. We start with the following lemma, which establishes a similar 

result to Lemma 1. 

LEMMA 6: The Jacobson radical J can be decomposed into the direct sum of 

four Ms (D)-bimodules 

Y = J0o | Jol | J10 | J n  

where, forp, q �9 {0, 1}, Ypq is a left faithful module or a O-left module according 

as p -- 1 or p = O, respectively. Similarly, Jpq is a right faithful module or a 

O-right module according as q -- 1 or q = O, respectively. Moreover, for p, q, i, l �9 

{0, 1}, JpqJql c Jpt, JpqJ~t --- 0 for q r i and there exists a finite-dimensional 

nilpotent superalgebra N such that J11 ~ Ms (D) | N (isomorphism of Ms (D)- 

bimodules and of superalgebras). 

Proo~ Similar to the proof of Lemma 1 the first part follows from the [9, 

Lemma 2]. We only should note that  we can choose a homogeneous system Q of 

elements j �9 J l l  generating the J l i  as a Ms(D)-bimodule.  Let Q = Q(O)uQ(i), 

where Q(O) contains all even elements of Q and Q(i) contains the odd ones. Then 

we consider as in Lemma 1 the elements dk,~(j) = ~i=ls e~k3em~, k, m = 1,..  ., s, 

j �9 Q, which has the same grading type as j and commutes with elements of 

Ms(D).  Take N = N (~ | N (1), where 

N (~ = Span{dkm(j): j �9 Q(O), k, m = 1 , . . . ,  s) 
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and 

N (1) = Span{dkm(j): j E Q(1) ,k ,m = 1 , . . .  ,s}.  

We have that  M s ( D ) |  N is a superalgebra with natural Z2-grading: 

(Ms(F) @ N(~ �9 t @ N(1),M~(F) | N(1)-~M~(F) �9 t @ N(~ and the 

D-linear map r Jll  -~ M~(D) | N,  r erkjemq H erq | dkm(j) is extended to 

an isomorphism of the superalgebras. The lemma is proved. | 

Now, we will use the polynomials e~ (5; y) and e~ (5; y) from Lemmas 2 and 3 

to prove the following two lemmas. 

LEMMA 7: Let M = L = s ~ with s C N. I f  E'M, L C_ Id(G(A)) ,  then Jlo = 

Jm = (0). 

Proo~ For M = L = s 2 we construct, as in Lemma 2, the polynomial e~(~; ~) as 

a consequence of E* Now, we make the following substitution: let e l , . . ,  e8 M,L" 
be an ordered basis of Ms(F) consisting of all matrix units, for 1 < i < M and 

I _ < j < L + I .  Wese t  

and 

S---~iT(j_l)(M+l ) : :  ei | gjO, j r i 

8"-xi+(i-1)(M+l) : :  ei | gl i 

where g~ i E G (~ and g~i 6 G (1). Also, we get 

- -  1 SXj(M+I) : =  ej | g j ( M + l ) ,  

and 

I < j < L  

8"-'-X(L+I)(M+I) := rio | g 

1 G(1) where gj(M+l) 6 , rlo 6 Jlo and g 6 G (~ U G (1). 

As in Lemma 2 we put instead of the y's the elements of the type e | go, 

where e is a matrix unit and go 6 G (~ Choosing the matrix units e we fix all 

places for ~--~'s. 

As a result, after this substitution of elements of G(A), we obtain 

e~ (-~, ~y) = ( L[)M 2L eijrlO | g = O, 

where g 6 G. Thus rl0 = 0 for all rio 6 Jlo. Analogously, Jo, = 0 and the 

lemma is proved. | 
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LEMMA 8: Let M = L = s 2 with s �9 N. Let Jlz ~- Ms(D)  | N ,  where 

N = N (~ �9 N (1), as in Lemma 6. I f  E'M, L C_ Id(G(A)) ,  then N (~ C_ Z ( N ) ,  

the center of N,  and N (1) is anticommutative (or, which is the same, is nil oK 

degree 2). 

Proof." As in Lemma 3 for M = L = s 2 we determine the polynomial e~ (5, ~), 

which is a consequence of E'M, L. Then we make the following substitution, sim- 

ilar to the substitution in Lemma 7: let e l , . . . ,  es be an ordered basis consisting 

of matrix units of M~(F), for 1 < i < M and 1 < j <_ L + 1. We put 

and 

8"-Xiq-(j-1)(M-bl) :• ei | gO i, j ~ i 

S--~i+(i-1)(M+l) := ei @ gi 1 

where g~ i �9 G (~ and gi~ �9 GO) and they are all distinct. Moreover, we put  

- -  0 
8X(M_kl)_I_(j_I)(M~_2) :-~- ej | gj(M+l), 1 _< j <_ L, 

- -  1 8Xj(M.t_2) :~- ej ~ gj(M+2), 1 <_ j <_ L 

and 

8"'~(M+I)+L(M+2) :~--- dl | gl, 

8~(L+1)(M+2) : =  d2 | g2, 

where o G(O) 1 G (1) all distinct, 6 G (~ G (1) gj(M+l) E and gj(M+2) C are gl,g2 U 
and dl,d2 E N (~ U N (1). Also, as in the previous lemmas, we substitute the 

y's with elements of the type e | go, where the e's are distinct matrix units 

and go C G (~ taken to fix all places for ~-~'s. Hence we obtained the following 

results: if dl,d~ E N (~ or dl E N (~ and d2 E N (1) or dl E N (1) and d2 E N (~ 

then similarly to [9, Lemma 4] 

e~ (~-~, ~yy) = gl(L!)M2Leii[dl ,  d2] | g = 0, 

for some g �9 G and some natural K1. Thus [dl,d2] = 0. If dl,d2 �9 N (1) then 

e~(s"N,s--~) = K2(L!)M2L(eii(dl od2)) |  -- 0, K 2 �9 N. 

Hence did2 q- d2dl = 0 for all dl, d2 �9 N (1) and the lemma is proved. I 

The proof of the following lemma is the same as the proof of Lemma 4. 
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LEMMA 9: If  N~ denotes the algebra obtained from N by adjoining a unit 
element, then 

T(G(M~(D) | N~)) = T(G(Ms(D))). 

THEOREM 10: Let s E hi, s > O. Then var(E%,s2 ) = var(Ms(a) @ G(D')), 
where D ~ is a finite-dimensional superalgebra such that exp(D ~) < 2s 2. In 
particular, 

cn(E 2  ) 

Proof." The first part of the theorem is the same as that  of Theorem 5. Hence we 

have a finite-dimensional reduced superalgebra A with exp(G(A)) = exp(]?~2,s2) 

and E*~2,~2 C_ T(G(A)), and A = B + J  with B =~ Mdl(F) or B "= Ms I(D) 

or B TM Mkl,h (F). Since, by a result of Berele and Regev [3], exp(G(A)) = 

exp02sLs2 ) = 2s 2, we have 

A ~- M~(D)4(Y(~ 

and 

G(A) -~ M~(G)~-(J (~ | G(~  (1) | G (1)) 

with G(A) E ]2s2,~2. By Lemmas 6, 7 and 8 we have 

A ~ (M~(D)4J11) | Joo ~- (Ms(D) | N ~) �9 Joo. 

From Lemma 9, T(G(M2(D) | g~)) = T(G(Ms(D))). Then var(G(A)) = 

var(M~(G) @ G(Jo0)), where J00 is nilpotent. Hence, we get 

= var(M (G) �9 C(D')), 

where D ~ is a finite-dimensional superalgebra with exp(G(D')) < 2s 2. So, by 

[9, Corollary 2], we have 

ca(E;2 en(M,(G)) 

and the proof is complete. | 
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